
A MathLink Tutorial

Todd Gayley
Wolfram Research

MathLink is a library of functions that implement a protocol for sending and receiving
Mathematica expressions. Its uses fall into two general categories. The easiest and most common
application is to allow external functions written in other languages to be called from within the
Mathematica environment. If you have an algorithm that needs to be implemented in a compiled
language for efficiency reasons, or if you have code that you don't want to rewrite in
Mathematica, it is a relatively simple matter to incorporate the routines into Mathematica. This use
of MathLink is treated in the first chapter of this tutorial.

The second use of MathLink is to allow your program, running in the foreground, to use the
Mathematica kernel in the background as a computational engine. In effect, the program is a
"front end" for the Mathematica kernel. This requires a deeper understanding of MathLink, and is
treated in the second chapter.

Each of these two chapters is designed to stand on its own, so there is some repetition. There are
also topics that are relevant to all MathLink programmers that are treated more fully in one chapter
than in the other. I strongly recommend that you read both, but keep in mind that some of the
information may not apply to you, depending on how you plan to use MathLink.

This document is designed to supplement the information in the MathLink Reference Guide,
which is the main documentation for MathLink. There is also some information on newer features
of MathLink in the Major New Feautres of Mathematica Version 2.2 document, which comes
with Version 2.2, and is also available on MathSource. My intention here is to flesh out some
details, provide useful code fragments, discuss some underdocumented features, and show how
to accomplish some common tasks.

The information presented here refers to Version 2.2.2 of MathLink and later. Most of the
information is also correct for earlier versions, but a few of the functions and features may not be
present.

MathLink Tutorial 1

1. Calling External Programs from the
Mathematica Kernel

1.1 The Simplest Example: addtwo

1.2 Using :Evaluate: to Include Accessory Mathematica Code

1.3 Putting and Getting Arguments Manually

1.4 Passing Lists and Arrays

1.5 Passing Arbitrary Expressions

1.6 Requesting Evaluations by the Kernel

1.7 Error Handling

1.8 Troubleshooting and Debugging

1.9 Large Projects

1.10 Special Topics

2. Calling the Mathematica Kernel from
External Programs

2.1 A Simple Program

2.2 Opening a Link to the Kernel

2.3 Sending Expressions to the Kernel

2.4 Receiving Expressions from the Kernel

2.5 Blocking, Yield Functions, and All That

2.6 Graphics

3. Using Other Languages

3.1 C++

3.2 FORTRAN and Others

MathLink Tutorial 2

1. Calling External Programs from the
Mathematica Kernel

I will refer to external functions that are called from Mathematica as "installable" functions, since
they use the Install mechanism to be incorporated into the Mathematica environment. The
intent is that you should be able to take pre-existing C language routines, and with as little effort
as possible (ideally with no source code changes to the routines themselves), package them so
they can be called from Mathematica. For each function you want to call from Mathematica, you
write a template entry that specifies the name of the function, the arguments that the function
needs to be passed and their types, and the type of argument it returns. This template file is then
passed through a tool called mprep, which writes C code that manages most, possibly all, of the
MathLink-related aspects of the program.

I want to emphasize how easy, even trivial, it is to perform these steps for many external
functions. With just a little more effort you can handle unusual functions or more sophisticated
communication. The MathLink Reference Guide is perhaps a little intimidating, but some of the
information is not directly relevant for programmers who merely want to call external functions
from Mathematica. I hope that this chapter will encapsulate much of the information you need in a
concise form.

1.1 The Simplest Example: addtwo

Let's look at a trivial example of an installable program, the addtwo program that is supplied with
MathLink. We will modify the program in several ways to demonstrate more advanced
techniques. Here is the C source file addtwo.c:

 #include "mathlink.h"

 int addtwo(int i, int j) {
 return i+j;
 }

 int main(int argc, char* argv[]) {
 return MLMain(argc, argv);
 }

Note that if you already had a C routine that took two int s and returned an int , all you would
have to do to make it installable would be to insert the one-line main function (actually, for
Windows users main is slightly more complicated, but it is still something that can simply be
pasted into your own code). The main function is simply a "stub" that calls the real main function
(named MLMain), which is written by mprep.

Here is the template file addtwo.tm:

 :Begin:
 :Function: addtwo

MathLink Tutorial 3

 :Pattern: AddTwo[i_Integer, j_Integer]
 :Arguments: { i, j }
 :ArgumentTypes: { Integer, Integer }
 :ReturnType: Integer
 :End:

The :Function: line specifies the name of the C routine. The :Pattern: line shows how the
routine will be called in Mathematica. The pattern given on this line will become the left-hand side
of a function definition, exactly as you would type it if you were creating the entire function in
Mathematica. The :Arguments: line specifies the expressions to be passed to the external
program. These expressions don't have to be the same as the variable names on the :Pattern:
line, although they often will be. You could, for example, put {Abs[i], j^3} . The point is that
what you put on the :Pattern: line and the :Arguments: line is Mathematica code; it will be
used verbatim in a definition that could be caricatured as follows:

AddTwo[i_Integer, j_Integer] :=
 SendToExternalProgramAndWaitForAnswer[{i, j}]

The :ArgumentTypes: and :ReturnType: lines contain special keywords used by mprep to
create the appropriate MLGet and MLPut calls that transfer data across the link.

The details of building the executable from the addtwo.tm and addtwo.c source files differ from
platform to platform. On Unix, you will usually use the mcc script that comes with Mathematica.
You would use a line like

 mcc addtwo.tm addtwo.c -o addtwo

The steps that mcc performs are as follows: (1) run mprep on the .tm file, to create a .tm.c file;
and (2) compile and link all the source files, including the .tm.c file, specifying to the 'cc'
compiler where to find the mathlink.h file and the MathLink library file (named libML.a on Unix
machines). It is the .tm.c file that contains the mprep-generated C source. Normally, this file is
deleted by mcc after it has been compiled, but if you want to see what it looks like you can
prevent its deletion by specifying the -g command-line option to mcc. Advanced users of
MathLink can learn a lot by studying this file. On Macintosh and Windows, the steps to build the
program will be different, and you should consult the README file that comes with MathLink.

The mcc method is convenient for simple projects, but it has some drawbacks, one of which is
that it is hard-coded to call the 'cc' compiler. You might want to skip mcc altogether and write
your own makefile. In that case, you will be calling mprep yourself. Here's an example:

 /math/Bin/MathLink/mprep addtwo.tm -o addtwo.tm.c

Note that mprep is not on your Unix path, so you will need to specify the full pathname. The
MathLink library, libML.a, is also located in the math/Bin/MathLink directory, and the mathlink.h
file is in math/Source/Includes.

To use the AddTwo function in Mathematica, you launch the external program with the Install
function:

link = Install["addtwo"]

LinkObject[addtwo, 2, 2]

The function LinkPatterns shows what functions are defined by the external program
associated with a given link:

MathLink Tutorial 4

LinkPatterns[link]

{AddTwo[i_Integer, j_Integer]}

AddTwo[3,4]

7

You may wonder, "How does the definition for AddTwo appear in Mathematica?" After all, the
only thing we've done is start up the kernel, type Install , and suddenly Mathematica knows
about a function called AddTwo. The answer is that the external program sends to Mathematica
the definitions for the functions it exports when the link is first opened. Here's what such a
definition looks like:

?AddTwo

Global`AddTwo

AddTwo[i_Integer, j_Integer] :=
 ExternalCall[LinkObject["addtwo", 2, 2], CallPacket[0, {i, j}]]

Of course, the programmer never sees any of this process, because it is handled at one end by the
code that mprep writes and at the other end by the Install code. Most programmers have no
reason to care how this feat is performed, but you should know that all the code involved is
accessible. If you are interested, you might want to take a look at a .tm.c file and the Mathematica
package Install.m, which resides in the StartUp subdirectory of the Packages directory.

1.2 Using :Evaluate: to Include Accessory
Mathematica Code

It was mentioned earlier that when the external program is installed it sends code to Mathematica
to set up the "Mathematica side" of the functions it exports. You can also specify arbitrary
Mathematica code to be sent. You might have some accessory code that your functions need to
have exist in Mathematica. A simple example is usage messages.

You can specify arbitrary Mathematica code to be sent to the kernel when your program is
installed by using another feature of template files, the :Evaluate: line. Here's an example of
specifying a usage message:

 :Evaluate: AddTwo::usage = "AddTwo[i, j] adds two integers."

 :Begin:
 :Function: addtwo
 :Pattern: AddTwo[i_Integer, j_Integer]
 :Arguments: { i, j }
 :ArgumentTypes: { Integer, Integer }
 :ReturnType: Integer
 :End:

Defining messages is a trivial example of the use of :Evaluate: lines. Another common use is to
make your functions appear in a package context. The current behavior of Install is to cause
all functions defined in installable programs to appear in the Global` context, not the current

MathLink Tutorial 5

Mathematica context (this behavior may be changed in a future version). This means that if you
want the AddTwo function to appear in a package context, say MyPackage` , then you cannot
do this:

BeginPackage["MyPackage`"];

Install["addtwo"]

EndPackage[]

The AddTwo function will still be put into the Global` context. The best way to handle this is
to put the BeginPackage statement into an :Evaluate: line in the .tm file:

 :Evaluate: BeginPackage["MyPackage`"]
 :Evaluate: AddTwo::usage = "AddTwo[i, j] adds two integers."
 :Evaluate: Begin["Private`"]

 :Begin:
 :Function: addtwo
 :Pattern: AddTwo[i_Integer, j_Integer]
 :Arguments: { i, j }
 :ArgumentTypes: { Integer, Integer }
 :ReturnType: Integer
 :End:

 :Evaluate: End[]
 :Evaluate: EndPackage[]

Everything that follows an :Evaluate: up until the first blank line or line whose first character is
not a space will be sent as a single unit. This means you need to have a separate :Evaluate: for
each separate statement or definition. There is more discussion of the use of :Evaluate: in
Section 1.9, Large Projects.

1.3 Putting and Getting Arguments Manually

Note that in writing the addtwo program and the template, we have not had to make a single
MathLink call. With a little additional effort you can take more control over the passing of
arguments and return values. This would be necessary, for example, if the external function
needed to receive or return expression types that are not among the set handled automatically by
mprep, or if the function returned different types of results (such as an integer or the symbol
$Failed) in different situations.

As an example, we will modify the addtwo program so that it works for larger integers, up to the
long integer size. In the template file, the keyword Integer on the :ArgumentTypes: and
:ReturnType: lines causes mprep to create calls to MLGetInteger and MLPutInteger , which
transfer C int s. Instead, we need to call MLGetLongInteger and MLPutLongInteger , so we
change these two lines:

 :ArgumentTypes: { Manual }
 :ReturnType: Manual

MathLink Tutorial 6

The keyword Manual on the :ArgumentTypes: line informs mprep that we will write our own
calls to get the arguments, and similarly Manual on the :ReturnType: line indicates that we will
put the result ourselves. Here's how the addtwo function looks now:

 void addtwo(void) {

 long i, j, sum;

 MLGetLongInteger(stdlink, &i);
 MLGetLongInteger(stdlink, &j);
 sum = i + j;
 MLPutLongInteger(stdlink, sum);
 }

Note the change in the function's prototype. Remember that the actual call to the addtwo function
is made from code that mprep writes, so its arguments and return value must match mprep's
assumptions, as determined from the :ArgumentTypes: and :ReturnType: lines of the
template. By specifying Manual on the :ArgumentTypes: line, you tell mprep to pass no
arguments to addtwo when it is called. Similarly, by specifying Manual on the :ReturnType:
line, you tell mprep to ignore any return value.

It is possible to use Manual on one of these lines and not the other. It is also possible to mix
Manual with other types on the :ArgumentTypes: line. For example, if you want to have the
first argument read automatically but get the second one yourself, you can write:

 :ArgumentTypes: { Integer, Manual }

In this case, the addtwo function would be written to take one int argument, and inside it there
would be one call to MLGetInteger . If you use Manual on the :ArgumentTypes: line, it must be
the last type in the list. In effect, Manual means "I want to get all the remaining arguments from
the link myself". You cannot specify

 :ArgumentTypes: { Integer, Manual, Integer }

It is likely that the arguments you will be passing to your function are among the set handled
automatically by mprep (integers, reals, lists of these, strings, and symbols). In this case it is
quite convenient to have mprep take care of this part of the MathLink communication. However, I
recommend that you manually return results to Mathematica. It only takes one line of code to send
simple types back, and for any of the more advanced MathLink techniques described below, you
will need to have control over what is sent back and when.

1.4 Passing Lists and Arrays

Another case where you need to use the Manual keyword is when you need to return a list to
Mathematica. The MathLink sample program bitops demonstrates this. For our purposes only one
of the functions defined in bitops.c is relevant: the function complements , which takes a list of
integers and returns a list of the bitwise complements of the integers. Here is the template entry in
bitops.tm:

 :Begin:
 :Function: complements

MathLink Tutorial 7

 :Pattern: BitComplements[x_List]
 :Arguments: {x}
 :ArgumentTypes: {IntegerList}
 :ReturnType: Manual
 :End:

There is a keyword IntegerList that can be used on the :ArgumentTypes: line, so you can
have mprep get the list for you, but you cannot use it in the :ReturnType: line--you have to use
Manual and put the result list yourself. Here is the C function:

 void complements(int px[], long nx) {

 long i;
 int *cpx;

 cpx = (int *) malloc(nx);
 for(i = 0; i < nx; i++)
 cpx[i] = ~ px[i] ;
 MLPutIntegerList(stdlink, cpx, nx);
 free(cpx);
 }

Note that we have specified only one argument, an IntegerList , to be passed to the external
function, but the function itself is written to take an integer array followed by a long integer.
Confusion over this is a source of many user errors. When the mprep-generated code reads the
list of integers, it will determine the length of the list and pass this to your function. Sometimes
users mistakenly believe that they must themselves pass the length of the list from Mathematica,
so they erroneously write the :Arguments: and :ArgumentTypes: lines like this:

 :Arguments: {x, Length[x]}
 :ArgumentTypes: {IntegerList, Integer}

The long parameter that will receive the length of the list always comes immediately after the list
itself in the arguments to your function. For example, if you need to receive a list of integers, a
list of reals, and an integer, you would write the :ArgumentTypes: line like this:

 :ArgumentTypes: {IntegerList, RealList, Integer}

and the function prototype would look like:

 void func(int ilist[], long ilen, double rlist[], long rlen, int j);

To put the result list back to Mathematica, you can use MLPutIntegerList or MLPutRealList .

In addition to putting and getting lists of integers and doubles, MathLink has some new functions
for putting and getting multidimensional arrays in a single step, for example MLGetDoubleArray
and MLPutDoubleArray . Check the mathlink.h header file for the complete set. The easiest way
to describe these functions is to show a sample program. The following is an example function
that creates an identity matrix of size n:

 void identity_matrix(int n) {

 long dimensions[2];
 char *heads[2] = {"List", "List"};
 long depth = 2;
 int *mat;

MathLink Tutorial 8

 int i,j;

 mat = (int*) calloc(n * n, sizeof(int));

 for(i=0; i<n; i++)
 for(j=0; j<n; j++)
 if(i == j) mat[i + j * n] = 1;

 dimensions[0] = dimensions[1] = n;

 MLPutIntegerArray(stdlink, mat, dimensions, heads, depth);

 free(mat);
 }

The "Array " functions are similar to their "List " counterparts. In a PutArray function, instead
of a long length parameter, you pass an array of long s giving the length in each dimension. The
heads parameter is an array of char* that give the heads in each dimension (List in most
cases). If the heads are List in each dimension, you can simply pass NULL in place of heads .

Here's a complete example showing the use of MLGetDoubleArray and MLPutDoubleArray .
The function transposes a matrix of reals:

 :Begin:
 :Function: transpose
 :Pattern: MyTranspose[l_?MatrixQ]
 :Arguments: {l}
 :ArgumentTypes: {Manual}
 :ReturnType: Manual
 :End:

 void transpose(void) {

 long *dimensions;
 char **heads;
 long depth;
 double *data;
 int i, j;
 double *tdata; /* put the transposed array here */
 long tdimensions[2]; /* reverse of dimensions */

 MLGetDoubleArray(stdlink, &data, &dimensions, &heads, &depth);

 tdata = (double*) malloc(sizeof(double)*dimensions[0]*dimensions[1]);

 for(i=0; i<dimensions[0]; i++)
 for(j=0; j<dimensions[1]; j++)
 tdata[i + j * dimensions[0]] = data[j + i * dimensions[1]];

 tdimensions[0] = dimensions[1];
 tdimensions[1] = dimensions[0];

 MLPutDoubleArray(stdlink, tdata, tdimensions, heads, 2);

MathLink Tutorial 9

 free(tdata);
 MLDisownDoubleArray(stdlink, data, dimensions, heads, depth);
 }

Note the call to MLDisownDoubleArray . Whenever you use MLGet to receive an object whose
size cannot be known at compile time (e.g., a string, symbol, list, or array), MathLink reads the
object into its own memory space and gives you only the address of the data. For example, in
MLGetString , you pass the address of a char* (i.e., a char**), and MathLink stuffs the address
of the string it received into your char* . You'll note that you haven't had to allocate any memory
yourself or worry about how big the data is. At this point, MathLink "owns" the data, and it is
waiting for your permission to free the memory that it occupies, which you grant when you call
the MLDisown functions. Between the time you call MLGet and MLDisown , you can only read the
data--do not try to modify it in place. If you need to do that, allocate your own memory and copy
the data into it (e.g., using strcpy).

Note that you need to worry about calling MLDisown functions only if you call MLGet yourself.
For strings, symbols and lists that mprep gets automatically for you, it takes care of calling the
appropriate Disown functions after your function returns.

1.5 Passing Arbitrary Expressions

MathLink has functions for passing all native C types, along with single- and multidimensional
arrays. There are times, though, when you need to send or receive expressions that do not fit
neatly into C types. Your function might need to return a list of mixed integers and reals, or a list
of lists that is not a matrix, or something even more complicated like Integrate[x^2,
{x,0,1}] . How do you go about transferring expressions like these?

I will focus on returning such expressions from an external function. It is less likely that your
function would want to receive such expressions. It is certainly possible to receive complex
expressions, but what would you do with them? You'd have to write your own code to analyze
them and extract the desired information. If you need to deal with complicated expressions in
your external functions, you'd be better off writing some code on the Mathematica side that acts
as a "wrapper" around your template functions, manipulating and decomposing the expressions
into meaningful C-size chunks, and sending these instead. This type of chore is more easily
programmed in the Mathematica language.

You send expressions over MathLink in a way that mimics their FullForm representation.
There are MathLink functions for the necessary "atomic" types (integers, reals, strings, and
symbols), and if you need to put a "composite" expression (something with a head and zero or
more arguments), you use MLPutFunction to put the head and the number of arguments, then
MLPut calls for each of the arguments in turn. For example, to put the Integrate expression
above, you would use:

 MLPutFunction(stdlink, "Integrate", 2);
 MLPutFunction(stdlink, "Power", 2);
 MLPutSymbol(stdlink, "x");
 MLPutInteger(stdlink, 2);
 MLPutFunction(stdlink, "List", 3);
 MLPutSymbol(stdlink, "x");

MathLink Tutorial 10

 MLPutInteger(stdlink, 0);
 MLPutInteger(stdlink, 1);

Of course, if you want to return an expression like this from your function, you will need to
declare a Manual return type in the .tm file.

A very common error is attempting to put more than one expression from the external function.
An external function, just like any built-in function, cannot return two things. In the earlier
examples, we sent complex expressions back to Mathematica, but always only one of them. Here
is an example of this error:

 void return_two(void) {

 int i, j;

 MLGetInteger(stdlink, &i);
 MLGetInteger(stdlink, &j);

 MLPutInteger(stdlink, i);
 MLPutInteger(stdlink, j);
 }

The two integers returned need to be wrapped in a head of some sort so that they become part of a
single expression. The put calls need to be written like this:

 MLPutFunction(stdlink, "List", 2);
 MLPutInteger(stdlink, i);
 MLPutInteger(stdlink, j);

1.6 Requesting Evaluations by the Kernel

The external function can request evaluations by Mathematica between the time it is called and the
time it returns its result. For example, you might want Mathematica to assist you in computing
something, or you might want to trigger some side effect such as displaying an error message.
The MathLink function MLEvaluate is designed for this purpose. MLEvaluate takes a string
argument that will be interpreted by Mathematica as input. The result will be returned to your
function as an expression wrapped with the head ReturnPacket . You should read this
ReturnPacket from the link whether you care what is in it or not.

As an example, let's go back to the addtwo function and say you want to detect an overflow
when adding the two long integers (that is, a sum that is outside the range of a long). If an
overflow occurs, you want to show an error message in Mathematica and then return the symbol
$Failed instead of the sum.

You can use MLEvaluate to trigger the message, but how do you get the definition of the
message into Mathematica in the first place? You use an :Evaluate: line in your .tm file:

 :Evaluate: AddTwo::ovflw = "The sum cannot fit into a C long type."

The addtwo function now looks like this:

 void addtwo(void) {

MathLink Tutorial 11

 long i, j, sum;

 MLGetLongInteger(stdlink, &i);
 MLGetLongInteger(stdlink, &j);
 sum = i + j;
 if(i>0 && j>0 && sum<0 || i<0 && j<0 && sum>0) {
 MLEvaluate(stdlink, "Message[AddTwo::ovflw]");
 MLNextPacket(stdlink);
 MLNewPacket(stdlink);
 MLPutSymbol(stdlink, "$Failed");
 } else {
 MLPutLongInteger(stdlink, sum);
 }
 }

After the call to MLEvaluate , Mathematica will send back a ReturnPacket containing the
return value of the Message function (which is simply the symbol Null). You need to drain
this packet from the link, so you call MLNextPacket (which will return RETURNPKT) and then
MLNewPacket to discard the contents. If you wanted to read the contents of the ReturnPacket ,
then you would replace MLNewPacket with an appropriate series of MLGet calls. As an example,
let's say you wanted to have Mathematica compute a Bessel function for you. Here's how you
would send the request and read the result:

 MLEvaluate(stdlink, "BesselJ[0, 5.0]");
 MLNextPacket(stdlink); /* a RETURNPKT will be waiting */
 MLGetDouble(stdlink, &my_double); /* inside there will be a real */

MLNextPacket , MLNewPacket , and the MLGet functions are discussed in more detail in the
second chapter of this tutorial, where they are used more extensively.

Using MLEvaluate is not the only way the external function can send code to Mathematica for
evaluation. Anything sent wrapped in the head EvaluatePacket will be treated in this way. In
fact, MLEvaluate is merely a convenience function whose code just creates the expression
EvaluatePacket[ToExpression["the string"]] and sends this to Mathematica.

After Mathematica calls your external function, it reads from the link, expecting to find the final
result. The head EvaluatePacket tells Mathematica "This is not the final answer. Evaluate
this and return the result to me wrapped in ReturnPacket . Keep waiting for the final answer."
In this way, the external function can initiate dialogs of arbitrary length and complexity with the
kernel before it returns.

If it is most convenient to send the code you need evaluated as a string (for example, if the code is
known at compile time), you can use MLEvaluate . In some cases, though, it may be easiest to
send it as an expression wrapped in EvaluatePacket . In the above example computing
BesselJ , it is likely that the arguments to BesselJ will be variables in your own program, not
constants embedded in a string. Rather than constructing a string and sending it with
MLEvaluate , you might want to replace the MLEvaluate line with the following lines:

 MLPutFunction(stdlink, "EvaluatePacket", 1);
 MLPutFunction(stdlink, "BesselJ", 2);
 MLPutInteger(stdlink, my_int);
 MLPutDouble(stdlink, my_double);
 MLEndPacket(stdlink);

MathLink Tutorial 12

You read the resulting ReturnPacket in the same way as before.

1.7 Error Handling

Our addtwo function is still missing an extremely important aspect of MathLink programming:
error checking. Most MathLink functions return 0 to indicate an error has occurred, and you
should check their return values, at least for the reading functions. If you continue to issue
MathLink calls after an error has occurred, without clearing the error, things will no longer work
as expected. Specifically, the link simply refuses to do anything until you clear the error.
Checking for MLGet errors is handled for you by the code that mprep writes for any arguments
that are read automatically. If you don't do any manual getting of arguments, then you don't have
to worry about error checking. For any MLGet calls that you write yourself, it's up to you.

The exact series of steps you take after an error has been detected depends on whether you want
to try to recover or not. If an MLGet call fails, the easiest thing to do is to simply abandon the
external function call completely and return the symbol $Failed . It would be more informative
to trigger some kind of diagnostic message. There is a MathLink function called
MLErrorMessage , which returns a string describing the current error, and this string is a good
candidate for use in an error message to be seen by the user. Here is a code fragment that
demonstrates how to detect an error, issue a useful message, and then safely bail out of the
function call. For each MLGet-type call in your code, you can wrap it with something like:

 if(!MLGetLongInteger(stdlink, &i)) {
 char err_msg[100];
 sprintf(err_msg, "%s\"%.76s\"%s",
 "Message[AddTwo::mlink,",
 MLErrorMessage(stdlink),
 "]");
 MLClearError(stdlink);
 MLNewPacket(stdlink);
 MLEvaluate(stdlink, err_msg);
 MLNextPacket(stdlink);
 MLNewPacket(stdlink);
 MLPutSymbol(stdlink, "$Failed");
 return;
 }

Naturally, if you have more than one or two MLGet calls in your code, you would want to
implement this as a function or macro. Upon detecting the error, the first thing you do is call
MLClearError to attempt to remove the error condition, and then MLNewPacket to abandon the
rest of the packet containing the original inputs to the function (in case it hasn't been completely
read yet). The sprintf is used to construct a string of the form

 "Message[AddTwo::mlink, \"the text returned by MLErrorMessage\"]"

which is what is sent to MLEvaluate . The gyrations required to produce this string using
sprintf are a bit clumsy; this is getting close to a case where it would be easiest to send the code
as an expression rather than a string, as demonstrated earlier. The remaining lines are the same as
in the previous example of MLEvaluate . The message triggered here, AddTwo::mlink , needs
to be defined in an :Evaluate: line in the addtwo.tm file as follows:

MathLink Tutorial 13

 :Evaluate: AddTwo::mlink = "There has been a low-level MathLink error.
 The message is: `1`."

Now let's see these error messages in action. Earlier, we introduced the AddTwo::ovflw error
message, to be triggered when the two integers can be read from the link properly, but their sum
is detected to have overflowed:

AddTwo[2000000000, 1000000000]

AddTwo::ovflw: The sum cannot fit into a C long type.

$Failed

The AddTwo::mlink error is triggered whenever the arguments are not read properly by
MLGetLongInteger , which will be the case if either one is too large to fit into a C long type:

AddTwo[5000000000, 1]

AddTwo::mlink:
 There has been a low-level MathLink error. The message is:
 machine integer overflow.

$Failed

1.8 Troubleshooting and Debugging

If you get either one of these two errors when you try Install["progname"] :

LinkOpen::linkf: LinkOpen[progname] failed.

LinkConnect::linkc: LinkObject[progname, 1, 1] is dead; attempt to connect failed.

then either the program is not being found, or it is launching and then immediately crashing. If
you Install a program that exists but is not properly MathLink-aware, then Install will
hang until you abort it. Install does not interpret the string you give it, and in particular it does
not search the directories on $Path (this behavior may change in the future). The directories it
does search are dependent on factors outside of Mathematica, such as the operating system and
shell. On Unix, for example, the path that is searched is the path inherited by shell processes
launched by the kernel. You may need to give a complete pathname to the program. To make sure
that your program is at least minimally able to run, simply launch it from the command line (under
Unix) or by double-clicking it (Macintosh or Windows). You should get a "Listen on:" prompt,
which you can dismiss, followed by a "Connect to:" prompt, which you also dismiss, at which
point the program will exit.

If your program passes the above test, but otherwise behaves unexpectedly, then a few simple
debugging techniques will likely pinpoint the error. If the program crashes because of something
in your computational code, or if it exits because you are using MathLink calls incorrectly, you
will probably see the following message:

LinkObject::linkd:
 LinkObject[progname, 18, 3] is closed; the connection is dead.

In most cases, there is a simple error in your MathLink code. Most of the MathLink functions
return 0 to indicate that an error has occurred. Go back into your source and insert statements to

MathLink Tutorial 14

check the return values of each MathLink function (start with the reading
functions--MLNextPacket , MLNewPacket , and anything with Get in its name).

If you want to run your installable program with a debugger, you will generally need to launch it
inside the debugger, and then establish a connection with Mathematica manually, rather than
having Mathematica launch your program automatically. This issue is discussed in the MathLink
Reference Guide, along with an example using the Unix gdb debugger. The details differ from
platform to platform, but the concept is the same. One side of the link needs to open in Listen
mode, and the other side then uses Connect mode to connect to that listening link. Which side
does which is not important; in my example I reverse the roles in the MathLink Reference Guide
example. Begin by launching the program in your debugger. You will get a "Listen On" prompt,
to which you give an arbitrary link name (on Macintosh and Windows, these are arbitrary strings,
like myLink; on Unix, they will be numbers, 5000 for example). Now, switch to Mathematica
and type:

link = Install["name", LinkMode->Connect]

where name is the linkname you specified to the "Listen On" prompt. Use string quotes around
the name, even if it is a number (you don't use string quotes earlier, when you reply to the Listen
On prompt). Note that Install can take the same sort of arguments that LinkOpen takes.
Here, we give a linkname as the first argument (when we want Mathematica to launch the
program, this is just the filename), and specify link options as well.

1.9 Large Projects

The examples so far have all been single functions. They are a good model for the occasional
numerical function that you want to incorporate into Mathematica. The potential for installable
functions is much greater, though. You can create entire packages or sets of packages,
implemented in one or more external programs, that effectively "graft" new capabilities onto the
kernel. Some special issues arise when considering larger projects based on installable programs.

First, you will undoubtedly need to write some Mathematica code to go along with your C
functions. I suggest writing "wrapper" functions in Mathematica that perform the handling of
options, some processing of arguments and error checking, and other tasks that are more easily
done in Mathematica. These are the functions that are visible to the user, and they then call private
functions that are the ones named in templates and map directly to functions in the external
program. You can develop very sophisticated interactions between the C and Mathematica code.

Through the use of :Evaluate: lines in your .tm file, you can embed your entire package code in
the program source files, so that there is no separate .m file to be loaded. The advantage to this is
convenience for users (they can just Install the program and be ready to go), but the
disadvantage is that any modification of the package code requires that the program be
recompiled. Chances are that your users will not be doing this, though, and during development
you can keep the package code in a separate .m file.

The basic decision is whether you will have the package code embedded in the external program,
so what the user types is Install["progname"] , or have a package (.m) file that calls
Install within it, so what the user types is <<Packagename` . The problem with the latter
approach is that users need to either: (1) always give the program a predetermined name and
always put it someplace it will automatically be found by Install , or (2) edit the .m file to

MathLink Tutorial 15

reflect what they choose to name the program and the pathname where they put it. The advantage
to this approach is that it makes your program behave more like a seamless extension to the
kernel. Specifically, the context-handling functions will work correctly with it, so that users use
Get and Needs with your package name just like any other package name, and may even be
unaware that an external MathLink program is involved. Having written significant programs that
use both approaches, I recommend the second method, writing your package code in a .m file that
calls Install internally.

You can embed C code in a .tm file, and it will be passed along unchanged by mprep. This means
that you don't need a separate .c file, and this is convenient if your code is not long or
complicated. In fact, all your code--templates, package code, and C code--can be included in one
.tm file if desired. Here is a sample of the suggested structure of such a .tm file:

:Evaluate: BeginPackage["MyPackage`"]

 All of the package code is here, in :Evaluate: sections...

:Evaluate: FirstFunction::usage = "FirstFunction does..."

 etc....

:Evaluate: EndPackage[]

 The C code begins:

#include "mathlink.h"

void template_func1() { ...

 etc....

 Templates begin:

:Evaluate: Begin["MyPackage`Private`"]

:Begin:
:Function: template_func1

 etc....

:Evaluate: End[]

If you are writing a commercial-quality program, make sure that your external functions behave
as if they were well-written built-in functions. This means, among other things, that they should
be abortable, and they should return Mathematica-style messages for all errors or warning
conditions.

MathLink Tutorial 16

1.10 Special Topics

1.10.1 If You Don't Know the Length of the Result

Notice that you have to specify the number of arguments that will follow in every
MLPutFunction call. Sometimes it is inconvenient to have to know ahead of time the number of
arguments that you will send. For example, you might be running a loop, generating one element
of the result list in every iteration, and you don't know ahead of time when the loop will end.
There are a couple of tricks for getting around this problem.

One method doesn't involve MathLink at all--you just allocate enough local storage in your C
program to hold all the elements, counting them as you place them in this storage, and when you
are finished you put them on the link in the usual way. This is relatively easy, except you have to
deal with the hassle of memory management in C. You may need to do a lot of allocating and
reallocating memory to hold the result as it grows, and you need to be sure you free it all before
returning.

It would be easier just to send the elements as they are generated. Then you would need to
allocate only enough storage to hold a single element, reusing the same space for each successive
element. One way to do this is to create a nested list wrapped in Flatten . If you think about it,
you'll see that you never have to make any promises about the total number of elements that will
appear in the final flattened list. Every sublist contains two elements: an integer (in this particular
example) and another sublist. When all the integers you need have been sent, you send two empty
lists (to fulfill the final promise of two arguments), which will be obliterated by the Flatten .
The expression that is sent might look like Flatten[{1,{2,{3,{4,{{},{}}}}}}] , which
evaluates to {1,2,3,4} . It's actually a bit more complicated, since if you send a list that is
nested too deeply, you will hit Mathematica's $RecursionLimit , and trigger an error. The
way around this is to temporarily set $RecursionLimit to Infinity , which is best done by
localizing its value in a Block . Thus, the actual Mathematica code you will send will look like:

 Block[{$RecursionLimit = Infinity},
 Flatten[{1,{2,{3,{4,{{},{}}}}}}]
]

The sequence of MathLink calls to send this is straightforward:

 MLPutFunction(stdlink, "Block", 2);
 MLPutFunction(stdlink, "List", 1);
 MLPutFunction(stdlink, "Set", 2);
 MLPutSymbol(stdlink, "$RecursionLimit");
 MLPutSymbol(stdlink, "Infinity");
 MLPutFunction(stdlink, "Flatten", 1);
 MLPutFunction(stdlink, "List", 2);
 while(not_finished) {
 /* Here is the computation that generates the elements of the
 result. This would probably be the main computational section
 of your function. */
 i = generate_next_element();
 MLPutInteger(stdlink, i); /* or whatever the list elements are */
 MLPutFunction(stdlink, "List", 2);

MathLink Tutorial 17

 }
 MLPutFunction(stdlink, "List", 0);
 MLPutFunction(stdlink, "List", 0);

This may look complicated, but it's just "boilerplate" code that can be pasted into your program
where necessary.

If the elements of the result list are themselves lists, then Flatten will not work since it will
flatten out the sublists as well. You can use Level instead in this case.
Level[listOfLists, {-2}] extracts those expressions of depth 2 from the nested list,
which is what you want if the elements of the outer list are simple lists. If they are matrices, use
{-3} as the Level specification, since a matrix has depth 3.

This is an interesting example because what you send back to Mathematica is in effect a
"program", the execution of which produces the results. Of course, every Mathematica
expression is a "program" and vice-versa, but it is a conceptually useful mental leap here. There
are lots of other programs you can send that will evaluate to the desired list (a method similar to
the above could be based on Join), and you can even do something as fancy as sending back a
program that itself reads from the link, collecting the elements until it reads an "END" marker.
Once you start thinking in these terms, a wealth of sophisticated interactions become possible.

Another method for dealing with the problem of not knowing ahead of time how many elements
will be in the result list involves the use of a "loopback link", and it is described in the next
section. This method is the most elegant and probably the most desirable, except in cases where
the speed of the MathLink transfer is the most important consideration.

1.10.2 Loopback Links

Beginning in Version 2.2 of Mathematica, a new link mode was introduced--the "loopback" mode
(joining Launch, Listen, and Connect). This link type is quite useful, but underused by MathLink
programmers. Brief documentation for loopback links can be found in the Major New Features of
Mathematica Version 2.2 document.

A loopback link is a link that "points back" at you. You both write to and read from it. You can
think of it as a U-shaped track onto which you can place expressions for storage and later
examination or retrieval. If you think about it, you'll see that loopback links effectively give the C
progammer a Mathematica expression "type".

There are a lot of interesting things you can do with loopback links, but I will focus on one
application of great use in installable programs. This is to solve the problem discussed in the
previous section: how to send an expression (like a list) back to Mathematica when you don't
know in advance how many arguments it will have. The loopback link provides a very simple
solution--as you generate the elements of the result list, put them on a loopback link, not the link
back to the kernel, counting them as you go. Then when it comes time to send them to
Mathematica, you know how many there are, and you can specify this when you use
MLPutFunction to put the enclosing List .

The loopback link method for solving this problem has an additional advantage over the nested
list method mentioned in the last section. It may be that during the generation of the result list you
encounter an error condition or some other circumstance where you no longer want to send the
list at all (you might want to send the symbol $Failed instead, and you might want to trigger an
error message). If you are putting the result on a loopback link, you don't send anything to the

MathLink Tutorial 18

kernel until the computation is finished, and you can decide at that time to send whatever you
want.

You open a loopback link in the usual way, except you specify "loopback" as the linkmode. Let's
look at a complete function that returns a list of integers to Mathematica by first placing them on a
loopback link.

 void foo(void) {

 int i, num_elements;
 char loopback_argv[3] = {"-linkmode", "loopback", NULL};
 MLINK loopback;

 loopback = MLOpen(2, loopback_argv);
 if(!loopback) {
 /* might want to issue a message as well */
 MLPutSymbol(stdlink, "$Failed");
 return;
 }

 num_elements = 0;
 while(some_test) {
 i = generate_next_element();
 MLPutInteger(loopback, i);
 num_elements++;
 }

 MLPutFunction(stdlink, "List", num_elements);
 for(i=1; i<=num_elements; i++) MLTransferExpression(stdlink, loopback);

 MLClose(loopback);
 }

Note the use of MLTransferExpression to move the integers from the loopback link to the
kernel link. This function is described in the Major New Features of Version 2.2 document. It
provides a very convenient means for moving expressions from one link to another, since you
don't need to be concerned with the exact structure of each expression. The destination link is
given first, the source link second.

The above method is similar to storing the integers in memory allocated and maintained by you in
your C program. The advantage of using a loopback link is that you let MathLink deal with all the
memory-management issues. There are no calls to malloc , realloc or free , or checks for
writing past the end of your allocated storage. Memory management would not be difficult in the
case of a list of integers, but if you were accumulating a list of strings or functions, it would be a
big chore, with many possibilities for memory leaks and other bugs.

I cheated a bit, though, in not checking for errors in the MLPut calls onto the loopback link. An
MLPut might trigger a memory allocation inside MathLink, which could conceivably fail. You
don't really need to worry about this when writing to stdlink , the link to the kernel, because that
link is being drained by the other side as you pour data into it. A local link will require enough
memory to hold all the data at once, so you should check for errors in the MLPut calls if you are
storing a lot of data.

MathLink Tutorial 19

1.10.3 Making Your Function Abortable

If your function takes significant time to execute, you will want to make it abortable. That is,
when the user types the usual abort key sequence (Control-C in Unix, Command-period on
Macintosh, etc.), the function should terminate as quickly as possible and return something
appropriate.

To understand how this is done, you need to know that a link actually contains two separate
"channels" of communication. One channel is for the expressions being sent back and forth, and
the other one is for urgent messages that need to be sent out of sequence with the flow of
expressions. Examples are requests to interrupt or abort execution. This second channel is the one
that is managed by the "Message " functions in MathLink: MLPutMessage , MLGetMessage , and a
few others. Don't confuse these with the MLErrorMessage function (which returns a string
describing an internal MathLink error), or the familiar Mathematica error messages.

Normally, programmers writing installable functions don't need to worry about the low-level
details at all. Handling messages from the kernel is performed in code that mprep writes for you.
All you need to know is that there is a global variable MLAbort in installable programs whose
value will reflect whether or not the user has requested that the function be aborted. If you are
running a time-consuming loop, you should periodically check the value of MLAbort . If it is
non-zero, then you should bail out as quickly as possible.

What should your function return to Mathematica if the user aborts the evaluation? A quick
answer might be the symbol $Aborted . Indeed, this is what the MathLink Reference Guide
suggests, and this is what your function will return if you do not use Manual as the return type in
the template, because then it is the mprep-generated code that takes care of sending the final
answer to Mathematica. That code checks the variable MLAbort , and if it is set, $Aborted is
sent no matter what your function returns.

However, sending $Aborted is probably not the ideal behavior. After all, when the user aborts
a calculation that does not involve an external function, the entire evaluation aborts, and
$Aborted is returned as the Out[] value. It is not the case that whatever function was
executing at the time the abort was requested returns $Aborted . That is, if you evaluate
f[g[x]] , and you abort during the execution of g[x] , you don't get f[$Aborted] as the
result. Unfortunately, if g was an external program that returned $Aborted , this is what you
would get. If you're writing a program that involves calling external functions, you don't want to
worry that an expression deep inside your code is going to evaluate to $Aborted instead of
something meaningful simply because the user tried to abort at an inopportune time!

 While the external function is executing, Mathematica captures abort requests and sends them to
the function as MathLink messages. As a MathLink programmer, if you want your functions to
behave like built-in ones, it is your responsibility to "propagate" the abort request back to
Mathematica's normal abort-processing mechanisms, which are restored when the external
function returns. You do this by returning not the symbol $Aborted , but rather the function
Abort[] . If you return Abort[] , then Mathematica will halt the entire evaluation no matter
how deep inside it, just like it does with programs written entirely in Mathematica.

The fact that the abort behavior of mprep-generated code is not ideal is another reason to routinely
use the Manual return type and put the result to Mathematica yourself.

Earlier, I said that all you need to know is that there is a global variable MLAbort in installable
programs. This isn't strictly true, however--there is one more detail you need to be aware of. On
systems without preemptive multitasking (Macintosh and Windows), your function needs to yield
the processor so that the kernel has a chance to actually send the abort message to you. You could
write calls to an appropriate function depending on the platform (e.g., on Macintosh, call
WaitNextEvent), but there is an easier solution that will keep your code portable between
systems. MathLink supports something called a yield function, which is discussed more fully in
Section 2.5.2. For now, simply note that template programs define and install a yield function (it
is written by mprep) that calls the appropriate function to yield the processor temporarily to other
programs. Therefore, you can simply call the yield function periodically during your calculation.

MathLink Tutorial 20

Earlier, I said that all you need to know is that there is a global variable MLAbort in installable
programs. This isn't strictly true, however--there is one more detail you need to be aware of. On
systems without preemptive multitasking (Macintosh and Windows), your function needs to yield
the processor so that the kernel has a chance to actually send the abort message to you. You could
write calls to an appropriate function depending on the platform (e.g., on Macintosh, call
WaitNextEvent), but there is an easier solution that will keep your code portable between
systems. MathLink supports something called a yield function, which is discussed more fully in
Section 2.5.2. For now, simply note that template programs define and install a yield function (it
is written by mprep) that calls the appropriate function to yield the processor temporarily to other
programs. Therefore, you can simply call the yield function periodically during your calculation.

Note that many MathLink functions call the yield function themselves internally (including the
Put -type calls). Therefore, you don't need to worry about calling the yield function if you are
making MLPut calls during your computation (for example, if you are putting pieces of the result
on the link periodically during your calculation). You need to call the yield function only if your
function doesn't make any MLPut calls before checking the value of MLAbort . You also don't
need to do it if you are running under Unix (but you might want to, for portability reasons).

Here is a skeleton of a template program that performs a long calculation and periodically checks
MLAbort . Note that MLCallYieldFunction is new in Version 2.2.2, and don't worry about
what the arguments mean--just copy the code exactly as it appears below.

 void long_function(void) {

 int result = 1;

 while(some_test && !MLAbort) {
 result = perform_computation(result);
 MLCallYieldFunction(MLYieldFunction(stdlink), stdlink,
 (MLYieldParameters)0);
 }

 if(MLAbort) {
 MLPutFunction(stdlink, "Abort", 0);
 /* Contrast with: MLPutSymbol(stdlink, "$Aborted"); */
 } else {
 MLPutInteger(stdlink, result);
 }
 }

What if you are sending elements of a result list to Mathematica as you go, so that when you
detect an abort you have already sent a partial answer? You cannot "take back" what you've sent
and send something else (like Abort[]) instead. However, if you simply call MLEndPacket in
the middle of sending an expression (i.e., at a place where MLEndPacket is illegal), Mathematica
will get the symbol $Aborted by default.

In summary, a time-consuming function should periodically check the value of MLAbort . You
might need to call the yield function periodically, to allow the kernel process to send the abort
message to you. If you are putting the result back to Mathematica manually, you should send the
function Abort[] and return. If you are not using Manual on the :ReturnType: line of the
template file, then you should immediately return a value from your function (it can be garbage,
since it will not be sent to Mathematica anyway). The mprep-generated code will send

MathLink Tutorial 21

$Aborted in its place. Finally, if you have already sent part of the result by the time you detect
the abort, you should just call MLEndPacket , which will cause Mathematica to get the symbol
$Aborted by default.

MathLink Tutorial 22

2. Calling the Mathematica Kernel from
External Programs

Using MathLink to "install" external programs into Mathematica is very useful, but it only
scratches the surface of what can be done. The real power of MathLink is that you can add the
computational and programming services of the Mathematica kernel to your own programs.
MathLink is not just a way to control the kernel, it is the way. When you use the standard
"notebook front end" that ships with Mathematica, you are using MathLink in this way. There is
no privileged communication between front end and kernel--everything takes place via the same
open, documented set of MathLink functions that is available to all programmers.

Using MathLink to drive the kernel is more complex than writing installable functions because
you have to write all the MathLink code yourself, and you will be having more complicated
interaction with the kernel.

It is important to remember that you do not use the kernel as if it were a compiled library of
mathematical routines. Rather, you are interacting with a separate program that has its own thread
of execution. You will be running the kernel in so-called "mathlink mode", which means that all
the kernel's input will come from your program, all its output will be directed to your program,
and all communication will take place in the form of "packets". You have to know the proper way
to send expressions to the kernel, what type of results to expect back, and how to read them off
the link.

Two useful resources you might not be aware of are available on MathSource. The first is the
Macintosh program Link Tutor, written by this author, which gives you a point and click interface
for executing MathLink functions. You can execute MathLink functions one at a time in an
interactive session and see the results. It is a good tool for learning what types of packets the
kernel will send you under certain conditions, in what order, and what their contents are. The
other resource is frontend.c, a small C program that implements a more or less complete
terminal-like interface to the kernel. This is a good place to see code for reading out the contents
of all of the packet types you might get from the kernel.

2.1 A Simple Program

Let's look at a simple example of a program that uses the kernel for computation. This program
will launch the kernel, have it calculate the sum of two integers, then close it and quit. We will
look at these specific programming techniques in detail later; for now note the general idea and
how simple it is.

 #include <stdio.h>
 #include "mathlink.h"

 int main(int argc, char * argv[]) {

 int i, j, sum;

MathLink Tutorial 23

 MLINK lp;
 int pkt;
 MLEnvironment env;

 printf("Enter two integers:\n\t");
 scanf("%d %d", &i, &j);

 env = MLInitialize(NULL);
 if(env == NULL) return 1;
 lp = MLOpen(argc, argv);
 if(lp == NULL) return 1;

 /* Send Plus[i, j] */
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, i);
 MLPutInteger(lp, j);
 MLEndPacket(lp);

 /* skip any packets before the first ReturnPacket */
 while (MLNextPacket(lp) != RETURNPKT) MLNewPacket(lp);

 /* inside the ReturnPacket we expect an integer */
 MLGetInteger(lp, &sum);

 printf("sum = %d\n", sum);
 MLClose(lp);
 MLDeinitialize(env);
 return 0;
 }

2.2 Opening a Link to the Kernel

2.2.1 MLOpen

The MathLink function that opens a link is MLOpen. There are a lot of details about how links are
opened, what protocols are used, and so forth, that are treated in the MathLink Reference Guide.
I will just briefly discuss some of the main points. You can use MLOpen to launch the kernel
directly from your program, and this is probably what you will most often want to do. MLOpen
takes an argc/argv pair of arguments, like the main function of a C program. This is so you can
pass the argc and argv originally passed to your program directly into MLOpen, allowing the user
to specify arguments for the link when they launch your program. MLOpen will ignore command
line arguments that do not make sense to it, so you don't have to worry about interference from
arguments that you want your own main function to use. A typical Unix command line to launch
a program that will itself launch a kernel might look like this:

 myprog -linkname 'math -mathlink' -linkmode launch

Note that 'math -mathlink' must be quoted so that it is sent to MLOpen as a single argument (the
-mathlink is an argument to math, so in effect there is a command line within the command line).
Alternatively, you can just hard-code the argv array in your program like this:

 int argc = 4;
 char *argv[5] = {"-linkname",
 "math -mathlink",
 "-linkmode",
 "launch",
 NULL};

MathLink Tutorial 24

 int argc = 4;
 char *argv[5] = {"-linkname",
 "math -mathlink",
 "-linkmode",
 "launch",
 NULL};

The advantage of allowing the user to specify the link options on the command line is that they
might want to use a linkmode other than 'launch', or perhaps they will need to specify a different
name for the kernel program than just 'math'. Of course, you can query the user for link
arguments through prompts or a dialog box if you wish, instead of reading the command line.

The above example was typical for Unix. On the Macintosh, the link name will normally look a
bit different, perhaps the following:

 int argc = 4;
 char *argv[5] = {"-linkname",
 "'Hard Disk:Math 2.2:Mathematica Kernel' -mathlink",
 "-linkmode",
 "launch",
 NULL};

Notice the very important inner set of single quotes around the pathname. Because Macintosh
folder and file names can have spaces in them, it is important that the pathname be enclosed in
single quotes so it is seen inside MLOpen as a single string, not separate chunks broken up by
spaces.

In Windows, don't forget that C treats the '\' character specially in string constants. If you are
embedding filenames into your code, make sure you use two consecutive '\' to indicate a
directory separator, as in this example:

 int argc = 4;
 char *argv[5] = {"-linkname",
 "c:\\wnmath\\math -mathlink",
 "-linkmode",
 "launch",
 NULL};

2.2.2 MLConnect

If MLOpen fails, it will return NULL. However, the fact that MLOpen returns non-NULL does not
mean that the link is connected and functioning properly. There are a lot of things that could be
wrong. For example, if you launch a program that knows nothing about MathLink, the MLOpen
will still succeed. There is a difference between opening a link (which involves setting up your
side) and connecting one (which verifies that the other side is alive and well).

If the link cannot be connected, then the first MathLink call you make that tries to read or write
something will fail, or worse, hang indefinitely. Rather than put some special-case test on your
first reading or writing function (which may be physically quite distant in your code from the
MLOpen call), you might want to call MLConnect after MLOpen. MLConnect will try to connect the
link without actually reading or writing anything, and it's a convenient, self-documenting way of
ensuring that the link is functioning properly before proceeding with your program. MLConnect
takes a link object as its argument, and returns non-zero to indicate a successful connection.

It's important to note that the MLConnect function will block until the connection succeeds or until
it detects a fatal problem with the link. Thus, your program will hang during the startup time of
the kernel (if you call MLConnect immediately after MLOpen). A more serious problem is that if
the user mistakenly launches a program that is not MathLink-aware, MLConnect will block
indefinitely. Dealing with blocking in MathLink functions is discussed more thoroughly later, but
for now note that there are two strategies: installing a yield function or polling MLReady. The use
of MLReady deserves special comment in the present context. Before the link is connected,
MLReady has a special meaning: it tells whether the other side is ready to participate in a
connection. In other words, it tells whether MLConnect will block or not. Thus, before you call
MLConnect , you can repeatedly call MLReady, waiting for it to return TRUE, and perhaps bail out
of the attempt to connect after some period elapses.

MathLink Tutorial 25

It's important to note that the MLConnect function will block until the connection succeeds or until
it detects a fatal problem with the link. Thus, your program will hang during the startup time of
the kernel (if you call MLConnect immediately after MLOpen). A more serious problem is that if
the user mistakenly launches a program that is not MathLink-aware, MLConnect will block
indefinitely. Dealing with blocking in MathLink functions is discussed more thoroughly later, but
for now note that there are two strategies: installing a yield function or polling MLReady. The use
of MLReady deserves special comment in the present context. Before the link is connected,
MLReady has a special meaning: it tells whether the other side is ready to participate in a
connection. In other words, it tells whether MLConnect will block or not. Thus, before you call
MLConnect , you can repeatedly call MLReady, waiting for it to return TRUE, and perhaps bail out
of the attempt to connect after some period elapses.

2.2.3 Using Listen and Connect LinkModes

You do not have to launch the kernel in your program. If it is already running, users can establish
a connection to your program manually. This is done using the Listen and Connect link modes.
One side must open a link in Listen mode, and the other opens a link with Connect mode,
specifying the listening link to connect to. For example, your program can open a listening link,
announcing to the user what "name" is being broadcast (or letting the user pick a name), and then
the user can manually connect to that link from Mathematica. For example, if you opened a link
on a Macintosh with this argv array:

 char *argv[5] = {"-linkname",
 "myLink",
 "-linkmode",
 "listen",
 NULL};

then the command in Mathematica to connect to that link would be the following:

LinkOpen["myLink", LinkMode->Connect]

At this point, the connection will be established so that expressions can be read and written on
each end, but the kernel is still functioning in its normal interactive mode; it has not become a
"slave" to your program (it is not yet in "mathlink mode"). To point the kernel's attention toward
your program, you need to set the kernel's $ParentLink variable to be the link to your
program:

$ParentLink = %;

(* or, just do it in one line:
 $ParentLink = LinkOpen["myLink", LinkMode->Connect]
*)

When you use the Launch linkmode, all this is taken care of for you.

As an experiment, some time when you are using the front end, type $ParentLink = Null .
This will "unattach" the master/slave relationship between front end and kernel. On Macintosh or
Windows, you will see the kernel's terminal-interface window appear in the background. Switch
to it, and you will see that you can now interact with it as if you had launched it by itself, instead
of from the front end. In the kernel window, type $ParentLink = First[Links[]] (this
will point $ParentLink back at the link to the front end, which is still open). Switch back to
the front end, and you should be able to continue with your session.

MathLink Tutorial 26

2.2.4 MLInitialize and MLDeinitialize

In the sample program above there is a call to MLInitialize before the link is opened. Starting
with Version 2.2.2, all correct MathLink programs must call MLInitialize before making any
MathLink calls, and MLDeinitialize after closing all opened links. MLInitialize and
MLDeinitialize have never been documented before Version 2.2.2, so it is likely that all
existing MathLink programs do not call them. Does this mean that every existing MathLink
program is suddenly broken when built with version 2.2.2 of the MathLink libraries? Technically
yes, but in practice there will rarely be a problem. If you are the author of a MathLink program
that you distribute in source code form, you should update the code to call these two functions. If
you are currently writing a program, make sure it calls them (this change is backward compatible
with older versions of MathLink).

Note that this is not a concern when writing "installable" functions (treated in the first chapter of
these notes). With installable functions, the mprep tool writes most of the MathLink code,
including calls to MLInitialize and MLDeinitialize .

Here is how to use them. Declare a variable of type MLEnvironment and assign it the return value
from MLInitialize . Then pass this variable to MLDeinitialize before your program exits.

 MLEnvironment env;

 ...

 env = MLInitialize(NULL);
 if(env == NULL) clean_up_and_exit();
 link = MLOpen(....);

 ...

 MLClose(link);
 MLDeinitialize(env);
 return;

2.3 Sending Expressions to the Kernel

The things you send with MathLink are Mathematica expressions, not just strings or numbers or
some other limited type. Since everything in Mathematica is an expression, you have its full
power and expressiveness at your disposal. There are two classes of expressions in Mathematica:
"atomic" expressions, which have no subparts (these are strings, symbols, and numbers), and
"composite" expressions, which have a head and zero or more arguments. Composite
expressions are things you would write with square brackets, such as f[] , h[x, y] ,
{1,2,3} (which is a shorthand for List[1,2,3]), 2+2 (which is a shorthand for
Plus[2,2]), and Integrate[x^2, {x,0,1}] . There are MLPut functions for the
necessary atomic types (MLPutString , MLPutSymbol , MLPutInteger , etc.), and for composite
expressions you use MLPutFunction . You send expressions using these MLPut calls in a way
that mirrors their FullForm representation in Mathematica. Thus, to send the expression {1.23,
f[x], {5, "a string"}} , you would say:

 MLPutFunction(link, "List", 3);
 MLPutReal(link, 1.23);
 MLPutFunction(link, "f", 1);
 MLPutSymbol(link, "x");
 MLPutFunction(link, "List", 2);
 MLPutInteger(link, 5);
 MLPutString(link, "a string");

MathLink Tutorial 27

 MLPutFunction(link, "List", 3);
 MLPutReal(link, 1.23);
 MLPutFunction(link, "f", 1);
 MLPutSymbol(link, "x");
 MLPutFunction(link, "List", 2);
 MLPutInteger(link, 5);
 MLPutString(link, "a string");

If you aren't sure what sequence of calls is required for some expression, just launch
Mathematica, type in FullForm[Hold[expression]] , and the output can be translated
directly into the appropriate calls. Ignore the Hold that will be wrapped around the output--it is
included merely to prevent the expression from evaluating (you want to see the FullForm of the
original expression, not of what it evaluates to).

I mentioned earlier that when the kernel is in "mathlink mode", it sends all results in the form of
packets, and expects all input in packets. (The use of the term "packet" here should not be
confused with the concept of packets that might exist in some low-level communication protocol;
TCP/IP packets, for example. The MathLink programmer need have no concern over such
low-level issues.) MathLink packets are simply functions, "heads" that serve to convey to the
receiving side of the link some information about what to do with the contents. When the kernel
sends back the result of computing 2+2 , it sends back the answer wrapped in the do-nothing
function ReturnPacket :

ReturnPacket[4]

The ReturnPacket wrapper tells your program that the content is the result of an evaluation.

2.3.1 Packets for Sending Things to Mathematica

Everything that you send to the kernel should be wrapped in a packet head. There are three packet
types for sending things to the kernel.

The Mathematica "main loop"

To appreciate the difference between the various packets, you need to understand the concept of
Mathematica's "main loop". When you use Mathematica in the usual way, each input string you
type is fed through a main loop that begins with parsing the string into an expression, evaluating
the expression, and finally turning the resulting expression back into a string for printing to the
screen. An accounting of the steps in the main loop is given in Appendix A.7.3 of The
Mathematica Book. The steps include application of the $PreRead , $Pre , $Post and
$PrePrint functions, and most importantly, assigning the In and Out values.

The main loop is designed to implement the notion of an interactive "session", with a history of
inputs and outputs recorded in the In and Out values. For your use of the kernel, such a notion
may be superfluous. If you are just using it for computational services, you may have no reason
to want a running history of previous inputs and outputs. In this case, you want to circumvent all
the steps in the main loop except the actual evaluation of the expression. On the other hand, if you
are creating your own front end that a user interacts with, you mght want to display the In and
Out prompts, or at least provide a way to recall previous input and output.

The three packet types differ in the form of their contents, the form of the results returned the
kernel, the number and type of packets you will get back, and whether the main loop will be run.

MathLink Tutorial 28

As an example, if the main loop is run, you will always get an InputNamePacket, and
perhaps also an OutputNamePacket , with each evaluation.

EvaluatePacket

The contents of an EvaluatePacket are an arbitrary Mathematica expression, which will be
evaluated and the result sent back to you as an expression wrapped in ReturnPacket . The
main loop is circumvented.

Here is how you would send 3+3 :

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, 3);
 MLPutInteger(lp, 3);
 MLEndPacket(lp);

You may have seen or written MathLink code that did not explicitly use a packet head for sending
things. In the past, if you left off a packet head, EvaluatePacket was assumed. Be aware
that this behavior is no longer supported; always use a packet head and an explicit call to
MLEndPacket . Note that there is no "MLPutPacket " for sending the packet head--since packets
are just functions, MLPutFunction is used.

Building up complicated expressions with a series of these calls is straightforward, but it can be
very tedious. Another way to send something to Mathematica is as an input string wrapped in the
ToExpression function:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "3 + 3");
 MLEndPacket(lp);

For sending 3+3 this isn't any easier, but for something like Plot3D[Sin[x] Cos[y],
{x,0,2Pi}, {y,0,2Pi}] it saves a lot of code. You should use this method whenever it is
more convenient to send code as a string (for example if you know it at compile time, or if you
are reading the input from a file or keyboard).

Keep in mind that what you are sending to the kernel is Mathematica code in all its generality.
Anything that's possible to type into a Mathematica session can be sent via MathLink. It may be a
bit clumsier to create expressions with sequences of MLPut calls, but keep separate in your
thinking the code you want the kernel to execute and the details of "assembling" that code in your
C program.

Say you want not only to send the code as a string, but also to receive the result as a formatted
string, exactly as it is displayed in a normal interactive Mathematica session. You would do this if
you wanted to display the result to the user (i.e., with all the complicated line-breaking logic for
having multi-line expressions formatted properly). You need merely ask yourself how you would
write Mathematica code that would take a string, turn it into an expression, evaluate it, and then
turn the result back to a string. That code is simply

ToString[ToExpression["the string"]]

The series of functions to assemble this expression and send it from your C program follows
directly:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToString", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, my_string);
 MLEndPacket(lp);

MathLink Tutorial 29

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToString", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, my_string);
 MLEndPacket(lp);

EnterTextPacket

The contents of an EnterTextPacket must be a string, which will be sent through the entire
main loop, beginning with parsing as Mathematica input. The result of the evaluation will be sent
back to you as a formatted string wrapped in a ReturnTextPacket . Since the main loop is
run, you will also get an InputNamePacket , and possibly an OutputNamePacket . You
will not get an OutputNamePacket if the calculation returns Null (because Mathematica
doesn't give output prompts for Null return values). Note that the last thing you will get is the
InputNamePacket , because it is the prompt for the next input, not the one you just sent. In
other words, the signal that Mathematica is finished dealing with your last input is the arrival of
an InputNamePacket . EnterTextPacket is not discussed in the MathLink Reference
Guide, but causes the same behavior as using the Enter function, and this function is
documented. That is, the following two fragments are equivalent:

 MLPutFunction(lp, "EnterTextPacket", 1);
 MLPutString(lp, "2 + 2");
 MLEndPacket(lp);

 /* OBSOLETE... */
 MLPutFunction(lp, "Enter", 1);
 MLPutString(lp, "2 + 2");
 MLEndPacket(lp);

The use of Enter is now obsolete. Always use EnterTextPacket instead.

EnterTextPacket is what Wolfram Research's own front ends use for sending user input
(which is nothing more than a string of characters when typed in) to the kernel. In future versions
of Mathematica this may change, but the point is that if you want to implement an interface that is
similar to what the standard front ends present (accept user input as a string and print out
formatted output as a string, with prompts), you can send input to the kernel as a string wrapped
in EnterTextPacket . It is possible to implement a primitive interface that looks very much
like the kernel-only "terminal interface" with just a small number of lines of MathLink code by
using EnterTextPacket , which is exactly what is done in frontend.c example program,
available on MathSource.

EnterExpressionPacket

EnterExpressionPacket is like EnterTextPacket in that the main loop is run, except
that the contents of an EnterExpressionPacket must be an expression, not a string to be
parsed as code. Furthermore, the result is sent back to you as an expression wrapped in a
ReturnExpressionPacket .

 MLPutFunction(lp, "EnterExpressionPacket", 1);
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, 2);
 MLPutInteger(lp, 2);
 MLEndPacket(lp);

Actually, when you use EnterExpressionPacket , only a subset of the main loop is run.
There are some steps at the beginning of the main loop that occur before the input string is parsed
into an expression (application of the $PreRead function is an example). With
EnterExpressionPacket , you in effect bypass the parsing step because what you send is
already an expression. Similarly, there is a step at the end of the main loop that converts the result
expression to a string for display on the screen (the application of the $PrePrint function).
This step never occurs with EnterExpressionPacket , since what is sent back is the result
still in the form of an expression.

MathLink Tutorial 30

Actually, when you use EnterExpressionPacket , only a subset of the main loop is run.
There are some steps at the beginning of the main loop that occur before the input string is parsed
into an expression (application of the $PreRead function is an example). With
EnterExpressionPacket , you in effect bypass the parsing step because what you send is
already an expression. Similarly, there is a step at the end of the main loop that converts the result
expression to a string for display on the screen (the application of the $PrePrint function).
This step never occurs with EnterExpressionPacket , since what is sent back is the result
still in the form of an expression.

Summary of Packet Types for Sending to the Kernel

There are only three packet types: EvaluatePacket , EnterTextPacket , and
EnterExpressionPacket . These packet types differ in whether their contents are to be an
expression or a string, whether their results are to be returned as an expression or a string, and
whether they implement the kernel's so-called "main loop".

The one you choose will depend on the answers to the following questions:

Do you want the main input/output loop to be run?

Ask yourself whether you or your users will ever need to refer directly to previous input or
output. If the answer is no, then use EvaluatePacket for sending things to the kernel, which
bypasses the main loop. If the answer is yes, then use EnterTextPacket or
EnterExpressionPacket (the "Enter" in their names conveys the property of running the
main loop).

Do you want to send input as a string or as an expression?

As mentioned earlier, if you are letting users type input for the kernel, or if you know at compile
time some code you want to send, it is easiest to send the code as a string. If you will be using an
EvaluatePacket (based on your answer to the previous question), you can send a string as
follows:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "some string of Mathematica code");
 MLEndPacket(lp);

If you have decided that you want the main loop, you will be using EnterTextPacket or
EnterExpressionPacket , and the choice between these is whether you want to send a
string or an expression.

Do you want to receive output as a string or as an expression?

If you are using EvaluatePacket and want to get the result back as a string, use this:

 MLPutFunction(lp, "EvaluatePacket", 1);
 MLPutFunction(lp, "ToString", 1);
 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "some string of Mathematica code");
 MLEndPacket(lp);

If you use EnterTextPacket the result will always be a string, and with
EnterExpressionPacket , it will be an expression, although you can force the result
expression into a string in the same way as with EvaluatePacket , by wrapping the input
expression with ToString when you send it:

MathLink Tutorial 31

If you use EnterTextPacket the result will always be a string, and with
EnterExpressionPacket , it will be an expression, although you can force the result
expression into a string in the same way as with EvaluatePacket , by wrapping the input
expression with ToString when you send it:

 MLPutFunction(lp, "EnterExpressionPacket", 1);
 MLPutFunction(lp, "ToString", 1);
 MLPutFunction(lp, "Plus", 2);
 MLPutInteger(lp, 3);
 MLPutInteger(lp, 4);
 MLEndPacket(lp);

2.4 Receiving Expressions from the Kernel

2.4.1 Reading Packets: MLNextPacket and MLNewPacket

Everything the kernel sends to you will be wrapped in a packet. As mentioned earlier, packets are
just functions from the kernel's perspective. Their purpose is to convey to you information about
what is inside, whether you might be interested in it, and how to read it. You can read packets
with MLGetFunction if you want to, but this would be inconvenient. Instead, MathLink has two
special functions for manipulating incoming packets: MLNextPacket and MLNewPacket . Their
names are confusingly similar, but their actions are quite different. Think of packets as boxes,
and the kernel as sending you a stream of boxes on a conveyor belt. MLNextPacket opens a box,
whereas MLNewPacket discards an already-opened box. Once you have opened a box with
MLNextPacket , you must either read out its entire contents, or abandon it with MLNewPacket . It
is an error to call MLNextPacket at any time other than when you are "between" boxes, either
because you have completely emptied the last one or because you threw it away with
MLNewPacket . MLNewPacket has only one effect--to abandon already-opened boxes. If you call it
between boxes, it does nothing. That is important to remember because it means it is always safe
to call MLNewPacket more than once. If you encounter a condition where you know you are not
interested in any data that might be left in a packet, or you want to make sure that you are
currently between packets, you can call MLNewPacket without worrying if it has already been
called.

MLNextPacket returns one of a set of predefined integer constants to indicate the type of packet
that was opened. These constants are defined in mathlink.h, and have names like RETURNPKT,
RETURNTEXTPKT, INPUTNAMEPKT, etc. If you are implementing a sophisticated "front end" for the
kernel, you will typically have a switch statement in your main loop that tests the value of
MLNextPacket and branches to code appropriate for reading the contents of the various packet
types. You will need to do this if you are allowing the user to enter arbitrary Mathematica code,
so you need to be prepared to receive virtually any kind of packet type. For example, the user
might execute the InputString function, which prompts for an input from the user. If this
happens, your program will receive an InputStringPacket from the kernel, which is a
signal that you need to display a dialog box or other prompt to get input and then send back a
TextPacket with the reply. The InputString function is rarely used, of course, and most
of the time you'd only be sending and receiving a handful of common packets, but if you are
going to give the user a way to enter Mathematica code you need to be prepared for anything. An

MathLink Tutorial 32

excellent reference for handling the entire set of packets is the frontend.c sample program, which
can be found on MathSource.

For many uses, though, you are only interested in some limited interaction with the kernel (like
using it strictly for computational services), where you know the types of things you will be
sending, or at least where you know the types of results you are interested in (e.g., you don't
have to worry about displaying kernel messages, or the results of Print statements, or
graphics). In these cases, you will simply be discarding most packets. Typically, you will only be
interested in one packet type, the result of a computation, which will usually be a
ReturnPacket (depending on how you sent the computation in the first place, as discussed in
Section 2.3). This is what was done in the example program in Section 2.1. In this case, you
want to implement the logic, "for every packet that is not a ReturnPacket , throw it away".
That is coded as follows:

 while (MLNextPacket(link) != RETURNPKT)
 MLNewPacket(link);
 read_contents_of_ReturnPacket();

That little piece of code is responsible for more MathLink programming headaches than anything
else! That's because it appears throughout the sample programs, so people copy it verbatim into
their own programs without really being aware of its consequences. Specifically, they use it in
situations where a ReturnPacket will not be coming. What happens then? Well, you drain off
all packets waiting for a ReturnPacket , then call MLNextPacket , which will block forever, so
your program hangs.

Therefore, it is extremely important to be sure that you actually will be getting a ReturnPacket
before you use this code fragment! Typically, people encounter this error for one of two reasons:
they get out of sync with the incoming packets, so that they have already discarded the
ReturnPacket by the time the loop is entered; or, they send computations to the kernel
wrapped in EnterTextPacket (or, equivalently, they wrap it in the function Enter), which
causes results to come back in a ReturnTextPacket , not a ReturnPacket . The latter issue
is discussed in Section 2.3; for now I'll assume you are sending an EvaluatePacket (if you
will be getting a ReturnTextPacket , just substitute that for ReturnPacket in this
discussion).

If your program is hanging unexpectedly, it is almost a certain bet that it is hanging in
MLNextPacket because you are looping waiting for a packet type that will never arrive.

Another potential problem is that you have done something to cause a MathLink error before the
loop is entered. In that case, MLNextPacket (like most MathLink functions) will return 0 until the
error condition is cleared with MLClearError . A simple way to avoid this problem is to use the
following packet-reading loop instead:

 while ((pkt = MLNextPacket(link)) && pkt != RETURNPKT)
 MLNewPacket(link);
 if(!pkt) {
 handle_error(link); /* including calling MLClearError(link) */
 } else {
 read_contents_of_ReturnPacket();
 }

Finally, it is often the case that you don't even care what is in the ReturnPacket . For
example, if you send a definition to Mathematica like f[x_] := x^2 , then you will get back a

MathLink Tutorial 33

ReturnPacket that contains the symbol Null (many users are not aware that an expression of
this type returns something, because there is no Out line printed). Another example is if you read
in a package with Get --the return value of Get is the symbol Null . If you don't want to read
the ReturnPacket , throw it away with a final call to MLNewPacket :

 MLPutFunction(link, "Get", 1);
 MLPutString(link, "Statistics`NonlinearFit`");

 while ((pkt = MLNextPacket(link)) && pkt != RETURNPKT)
 MLNewPacket(link);
 MLNewPacket(link); /* abandon the RETURNPKT */

The second most common MathLink error is to forget to drain off the ReturnPacket s from
code that you send, especially "initialization" code you send before your real work begins. If you
forget to run the "throw away everything up to and including the next ReturnPacket " loop,
then later when you read a ReturnPacket that you expect to have the result of the first "real"
computation, you will instead be getting a ReturnPacket from something sent earlier.
Remember that everything you send will cause a ReturnPacket to be sent back, even if just
contains the symbol Null .

2.4.2 Packets Mathematica Might Send to You

There are quite a few packet types that Mathematica might send to your program. Generally, if
you are not allowing a user to directly interact with Mathematica (so you as the programmer have
control over what gets sent), you don't need to worry about many of them. You either won't get
them, or you can just discard them because you are not interested in their contents. For some of
them (e.g., InputNamePacket and OutputNamePacket), whether or not you get them
depends on how you send the input to Mathematica in the first place (see Section 2.3). Here is a
brief discussion of the more important types. Again, I refer you to the frontend.c program for an
example of how to handle every one of the packet types you might get from Mathematica.

InputNamePacket, OutputNamePacket

You will get these any time you send something wrapped in EnterTextPacket or
EnterExpressionPacket (you may not always get an OutputNamePacket , as discussed
earlier). Their contents are strings, something like "In[1]:=" or "Out[12]=" , which you
can print directly to the screen if you want to show the prompts. If you don't want to show these
to the user, you probably should use EvaluatePacket to send the original input, as explained
in Section 2.3, so they won't even be generated.

ReturnPacket, ReturnTextPacket, ReturnExpressionPacket

These packets will contain the result of an evaluation. A ReturnTextPacket will contain a
formatted string, ready to be printed directly to the screen (that is, it will have the appropriate
line-breaking and padding so that exponents and fractions will be lined up). A
ReturnTextPacket results from sending an EnterTextPacket . In contrast, a
ReturnPacket or a ReturnExpressionPacket will contain an expression, which you
will have to read with an appropriate series of MLGet calls. This is discussed in more detail
below.

MathLink Tutorial 34

MessagePacket

This packet signals the beginning of a warning or error message generated by the kernel. An
example is the following:

Part::partd: Part specification x[[1]] is longer than depth of object.

A MessagePacket will contain two things: first, a symbol (to be read with MLGetSymbol) that
is the name of the function (Part in the above example), then a string that is the "tag" of the
message ("partd" above). The MessagePacket will be followed by a TextPacket that
contains the text of the message.

TextPacket

This is used for the output of a Print statement, the output of ?Function or
Information[Function] , and also the text of a message (see discussion of
MessagePacket). The contents will always be a string (to be read with MLGetString , of
course).

DisplayPacket

This will hold PostScript code for a graphic, in the form of a string. There may be a series of
these, each containing a piece of the total PostScript. A DisplayEndPacket will signal the last
piece of PostScript. How to handle graphics is discussed elsewhere in this tutorial.

2.4.3 Reading the Contents of a Packet

Once you have "opened" a packet with MLNextPacket and you have decided not to discard it,
you need to read out the contents. This will require some appropriate sequence of MLGet calls. In
many cases, the contents of the packet are something simple, like a string, which can be read with
MLGetString . In the case of a ReturnPacket , though, the contents are an expression, and
you may need to implement some expression-reading logic of your own. An example of this is
the function read_and_print_expression from the factorinteger.c example program that is
included with MathLink. The basic idea is to recursively descend into the expression, calling
MLGetType for each new element to find out what MLGet call you will need to read it properly.

If you find yourself embarking on such a project, ask yourself if it is really necessary for you to
receive the results as an arbitrary expression. If you are expecting some simple type of
expression, like a number, that is meaningful in a C program, then fine. But for many
applications, there isn't really a whole lot to do with the dismembered expression pieces you're
going to get from the process. Often, what people really want is just a string form of the result,
because they are only going to display it on the screen. If that's the case, send the computation in
such a way that you will get back a formatted string as a result (see Section 2.3).

MathLink Tutorial 35

2.4.4 The "Disown" Functions

MathLink has several functions with "Disown " in their name, for example MLDisownString and
MLDisownIntegerList . Whenever you use MLGet to receive an object whose size cannot be
known at compile time (e.g., a string, symbol, list, or array), MathLink reads the object into its
own memory space and gives you only the address of the data. For example, in MLGetString ,
you pass the address of a char* (i.e., a char**), and MathLink stuffs the address of the string it
received into your char* . You don't have to allocate any memory yourself or worry about how
big the data is. At this point, MathLink "owns" the data, and it is waiting for your permission to
free the memory that it occupies, which you grant when you call the MLDisown functions.
Between the time you call MLGet and MLDisown , you can only read the data--do not try to modify
it in place. If you need to do that, allocate your own memory and copy the data into it (e.g., using
strcpy).

2.5 Blocking, Yield Functions, and All That

When you issue a Get -type call (including MLNextPacket), MathLink will block if there is
nothing waiting to be read from the link. This will cause a problem if you need to do something
(like service your user interface) without interruption. There are three solutions for handling this
problem.

2.5.1 MLReady and MLFlush

MLReady returns 0 to indicate that there is no data on the link waiting to be read, and 1 to indicate
there is. In other words, it tells you whether a Get -type call will block. You can use it to check
that there is data waiting before you call a reading function.

 MLFlush(lp);
 if(MLReady(lp)) {
 MLNextPacket(lp);
 ...handle the packet...
 }

Note the call to MLFlush before MLReady. MathLink is buffered, meaning that if you call a Put
function, the data is not necessarily sent right away, but might be held in a buffer instead. Any
time you need to ensure that the data is sent immediately, you can call MLFlush . An example
when you might need to do this is if you are sending something to the kernel that will trigger a
side effect, like writing something to a file that your program will read right away.

In the normal flow of writing and reading the link, calls to MLFlush are generally unnecessary,
since MathLink automatically flushes the link at appropriate times. Specifically, if you issue a
Get -type call and there is nothing there, your side of the link will be flushed. MLReady, however,
does not flush the link, so it can lie to you in that it is possible for MLReady to return 0, yet a Get
call would not block. This will happen if your side has some data that when sent will trigger the
other side to reply--the Get flushes the link and receives the reply right away. For this reason,
you should always call MLFlush before MLReady.

MathLink Tutorial 36

2.5.2 Let It Block

When MathLink is blocking, it calls what is known as a yield function. A yield function must
have two features: (1) it allows other processes to get processor time (on operating systems like
Macintosh and Windows that do not have preemptive multitasking); (2) it returns 0 or 1 to
indicate whether MathLink should continue blocking or bail out of the read call.

There is a default yield function inside MathLink, the details of which differ from platform to
platform. For example, on the Macintosh, it calls WaitNextEvent to allow other processes to get
time. If it didn't yield to other processes, then the sending side would never get a chance to send
anything and your read call would block forever!

You can install your own yield function if you wish, and this provides a solution to the blocking
problem. You simply call back to your main event loop from inside your yield function. When the
Get call returns, you process the result, send something else if you want, and then immediately
issue another Get call. Your program can spend most of its life blocking inside a MathLink
function, calling the main event loop to run the user interface or other periodic tasks. Here is a
trivial skeleton of what such a yield function might look like. Note that the second argument to a
yield function is of type MLYieldParameters . This is a reserved argument that is currently used
only in MathLink's own default yield function. You should simply ignore this argument.

 int yield_function(MLINK link, MLYieldParameters yp) {
 one_pass_main_event_loop();
 return 0; /* keep on blocking */
 }

The function you use to install your own yield function is MLSetYieldFunction . The interface to
this function has changed a bit to support some new MathLink platforms (Windows and Power
Macintosh). To see how to call it, I recommend that you look at a .tm.c file generated by mprep
(see the first chapter for details). The code generated by mprep installs its own yield function that
works in just the way I've described above (template programs spend their lives blocking inside
MLNextPacket , waiting for the kernel to call them). This will show you the proper way to call
MLSetYieldFunction for your platform and version of MathLink.

Having said this, note that in Versions 2.2.x and earlier of MathLink on Unix, there is a bug that
prevents MathLink from calling your yield function when it is blocking in an MLGet-type call,
unless your program receives a Unix signal. Thus, you will need to set some sort of timer to
periodically send yourself a signal, SIGALRM for example.

One final note: MathLink is not fully reentrant, in the sense that you cannot issue a call on a link
while another call on that link is in progress (you can read or write to different links). Therefore,
if you allow your user interface to run while inside the yield function, you must prevent users
from doing anything that would trigger a call on the same link. Thus, before calling the main
event loop, you might need to disable some menu choices or other features. You can then
re-enable them before returning from the yield function.

MathLink Tutorial 37

2.5.3 Write a Multithreaded Program

If your operating system and development environment allow you to write multithreaded
programs, this is an ideal solution to the blocking problem. Most operating systems support
multithreaded programming, including Macintosh, Windows NT, the upcoming Windows 4.0,
and many flavors of Unix. Simply fork a thread in which the read occurs and let it block. You
carry on other processing in other threads.

2.6 Graphics

When many people think of Mathematica graphics, they think of the PostScript code that is
rendered into the image they see. It is important to remember that a Mathematica graphic is an
expression, like everything else in Mathematica. It might look something like:

Graphics[{Line[{{0,0}, {1,1}}], Point[{.5,.5}],]

The PostScript code is generated as a side-effect of the Display function, and is not an inherent
part of the graphics object.

If you send a command that produces a graphic, say for example:

 MLPutFunction(lp, "ToExpression", 1);
 MLPutString(lp, "Plot[x^2, {x,0,1}]");

You will get back a ReturnPacket containing the Graphics object, and also a series of
DisplayPackets containing PostScript (the last one of which is a DisplayEndPacket). If you
want to display the graphic you have two choices: either render the PostScript somehow, or
convert the Graphics object into a form that you can render. This may seem obvious, but many
programmers forget that handling the PostScript is not their only option.

It is likely that in the future the PostScipt interpreter that is built into the notebook front end will
be spun off as a separate MathLink program that is callable by programmers. When this happens,
it will be easy for MathLink programmers to render Mathematica PostScript in their own
programs. Until then, though, dealing with PostScript is problematic unless your machine or
environment supports PostScript rendering.

You might want to consider dealing directly with the Mathematica graphics expression instead of
the PostScript. If you have a graphics library among your programming tools, you will probably
find it is not difficult to convert most Mathematica graphics into the native functions of your
library.

Here are some tips for handling PostScript on various platforms.

2.6.1 Unix

Under Unix, standalone PostScript interpreters have always been part of the Mathematica
distribution. You can use them in the same way as they are used by the non-notebook interface.
What you will get is a separate window, not a part of your program, managed by the PostScript
interpreter (e.g., motifps, olps, etc.) To enable this behavior, read in the appropriate graphics
initialization file. On most Unix systems, this will be Motif.m:

 MLPutFunction(link, "EvaluatePacket", 1);
 MLPutFunction(link, "Get", 1);
 MLPutString(link, "Motif.m"); /* NeXT.m on a NeXT */
 MLEndPacket(link);

 /* Now, read and discard packets up to, and including, the next
 ReturnPacket, which will be the return value of the "Get" function.
 It will contain the symbol Null, which is of no interest. */

MathLink Tutorial 38

 MLPutFunction(link, "EvaluatePacket", 1);
 MLPutFunction(link, "Get", 1);
 MLPutString(link, "Motif.m"); /* NeXT.m on a NeXT */
 MLEndPacket(link);

 /* Now, read and discard packets up to, and including, the next
 ReturnPacket, which will be the return value of the "Get" function.
 It will contain the symbol Null, which is of no interest. */

This imitates what happens when the kernel is run from the Unix command line. When you issue
commands that trigger graphics, you will not get DisplayPacket s containing PostScript; rather,
a window displaying the graphic will appear.

2.6.2 Macintosh and Windows

There is currently no supported way to render Mathematica PostScript on these platforms. For
Windows, see the source for the demo Visual Basic front end, which performs this feat.

It is possible to have your program create a skeleton notebook file and write the PostScript to that
file. When the file is opened in the notebook front end, the graphics will be displayed. The
frontend.c program demonstrates this.

MathLink Tutorial 39

3. Using Other Languages

3.1 C++

The MathLink library can be called directly from C++ exactly as it is called from C. You don't
even need to think about it. However, there is a complication when writing installable functions,
depending on what version of MathLink you have. The issue is that in some versions of
MathLink the C code that is generated by mprep is K&R-style (for compatibility with older C
compilers), not ANSI-style, and so it will not pass through a C++ compiler. Beginning with
Version 2.2.3, mprep has the ability to generate .tm.c files that are legal C++ files (you can
rename them .tm.cpp if you wish). On Macintosh and Windows, this is the default behavior. On
Unix platforms, you need to specify a command-line argument to mprep to have it generate
C++-compatible code. This behavior is undocumented and may change in the future, but for now
the argument is -prototypes:

 /math/Bin/MathLink/mprep -prototypes addtwo.tm -o addtwo.tm.c

If you have Version 2.2.2 or earlier, you must use a C compiler on the .tm.c file generated by
mprep. You can still code your external functions in C++ and pass those source files through
your C++ compiler. However, note that your functions are being called from the .tm.c file, and
thus from C. C++ provides a mechanism whereby you can inform the compiler that certain
functions will be called from C: the extern "C" declaration. This tells the C++ compiler not to
perform the usual name-mangling.

In summary, if you are not making use of the template mechanism (that is, you will not have a
.tm file in your project), you can call MathLink from C++ without worrying about language
issues. If you are using a .tm file, and have Version 2.2.2 or later of the MathLink materials, you
also don't need to worry about these issues since you can rename the .tm.c file .tm.cpp and pass
it through the C++ compiler. On Unix, you will need to specify the -proto option to mprep to
enable this. If you have an earlier version of MathLink, you will need to obey these two
guidelines:
 -- The .tm.c file must be compiled with a C compiler.
 -- Every C++ function named in the .tm file (and which will therefore be called
 from C) needs to be declared extern "C" .

3.2 FORTRAN and Others

The MathLink library is written in C. To create programs that use MathLink, you need to call the
functions in this library. For this reason, and others outlined below, MathLink is easiest to use
from C. You can, however, use MathLink in conjunction with FORTRAN or other languages.
This section refers specifically to FORTRAN, but much of the information is relevant to other
languages as well.

As discussed earlier, there are two broad classes of uses of MathLink. The first and most
common class of uses is to make external functions, written in some compiled language like C or
FORTRAN, available within Mathematica as if they were built-in functions. We call such external
functions "installable" since they use the Install mechanism to be made available within
Mathematica, or alternatively "template-based" since they involve writing a template file. The
second class of uses of MathLink is to allow your own programs to make use of Mathematica as a
computational engine. It is your program that users interact with, and the services of Mathematica
are used in the background. These two uses of MathLink present different issues and problems to
the FORTRAN programmer, so they will be discussed separately.

MathLink Tutorial 40

As discussed earlier, there are two broad classes of uses of MathLink. The first and most
common class of uses is to make external functions, written in some compiled language like C or
FORTRAN, available within Mathematica as if they were built-in functions. We call such external
functions "installable" since they use the Install mechanism to be made available within
Mathematica, or alternatively "template-based" since they involve writing a template file. The
second class of uses of MathLink is to allow your own programs to make use of Mathematica as a
computational engine. It is your program that users interact with, and the services of Mathematica
are used in the background. These two uses of MathLink present different issues and problems to
the FORTRAN programmer, so they will be discussed separately.

3.2.1 Calling External FORTRAN Functions from Mathematica

The mprep program writes C code for a very significant amount of the MathLink-related portions
(perhaps all of it) of an installable program. It is convenient to make use of this template
mechanism when you want to call external functions from Mathematica, no matter what language
they are written in. This requires that you have a C compiler. You may not need to know C in any
significant sense, because the C code that you write may only be a few lines, and some of that is
"boilerplate" code that is the same for every program and can just be copied out of the MathLink
Reference Guide or the sample programs supplied with MathLink.

You will be creating a C program that needs to call your external FORTRAN function. The exact
details of how you prepare your FORTRAN routine to be called from C depends on details of
your FORTRAN compiler, and perhaps also your C compiler. The difficulty of doing this
depends on the types of parameters you need to pass from C to FORTRAN and back. If you only
need to pass integers or real numbers, then it may be very simple. It is more complicated to work
with strings and arrays, since their representations differ in the two languages. As a simple
example, consider how you would modify the basic addtwo example. Everything about this
example remains the same except the actual C code for the addtwo function, and the fact that there
is now a separately compiled FORTRAN file containing code for the computation. Here's how
the FORTRAN code might look:

 subroutine addtwoF(i, j, k)
 integer*4 i,j,k
 k = i + j
 return
 end

Here's how the addtwo function might look:

 int addtwo(int i, int j) {

 int result;

 addtwoF(&i, &j, &result);
 return result;
 }

The addtwo C code is just a "wrapper" that prepares things for calling the addtwoF function. The
& is the "address-of" operator in C, and it is needed because FORTRAN expects arguments to be
passed by reference, not by value (as is the case with C). Thus, you need to pass to addtwoF not
the values of the integers i and j , but the actual addresses where the values are stored. The
FORTRAN code extracts the values from these addresses, adds them, then stuffs the result at the

MathLink Tutorial 41

address of the result variable. On some systems, you may need to put an underscore at the end of
the addtwoF function in the C source, calling it as addtwoF_(&i, &j, &result) ;

It is also possible that your FORTRAN compiler allows you to specify that parameters to a
function will be passed by value. If this is the case, then you may be able to completely dispense
with the C portion of the addtwo function because your FORTRAN code will be written in a way
that it can be called exactly as if it were written in C. The call to addtwo is made from the code
that mprep creates, and of course it writes the addtwo function call as if addtwo were written in
C. If your FORTRAN compiler lets you write FORTRAN that adheres to C's calling
conventions, then you may not need to write any C wrappers around your functions. An example
is Absoft FORTRAN, which includes the VALUE keyword to specify that parameters will be
passed by value. Here is what the addtwo code might look like in such a dialect of FORTRAN:

 integer*4 function addtwo(i, j)
 integer*4 i,j
 VALUE i, j
 addtwo = i + j
 return
 end

In this case, there is no addtwo written in C.

I want to emphasize that different FORTRAN compilers may use different calling conventions,
and thus there are many issues that might need to be resolved. These include what order the
arguments are passed in, whether they are on the stack or in registers, whether the return value is
on the stack or in a register, etc.

Whichever of these two methods you choose, remember that you need a C compiler, and that the
issue is not how to call C from FORTRAN, but rather how to call FORTRAN from C. You
should consult your FORTRAN compiler's documentation for information on how to write and
compile FORTRAN functions so that they can be called from C.

3.2.2 InterCall T M

There is a commercial product (not from Wolfram Research) called InterCall that simplifies the
process of calling external FORTRAN (or C) functions from within Mathematica. This method
uses MathLink only indirectly. InterCall has many capabilities, and I make no attempt to describe
them here. This discussion is not an endorsement of InterCall. For more information, consult
MathSource, which has a lot of InterCall-related materials. Try sending the following email
message to mathsource@wri.com:

 find InterCall

You will get a return mailing of abstracts of items on MathSource pertaining to InterCall.
Probably the most useful item is this one:

0202-587: InterCall(tm) Information Sheet and Abridged Manual (June 1992)
 Author: Terry Robb
 InterCall completely integrates the symbolic capabilities of
 Mathematica with the numeric routines of any external library. You
 can pass a Mathematica function, array, or any other expression as
 an argument to any external routine and InterCall will send the
 correct type of information to that external routine.

MathLink Tutorial 42

 0011: Info.txt Plain-text information sheet (5 kilobytes)

 0022: InterCall.tex TeX version of Abridged InterCall Manual (53
 kilobytes)

 0033: InterCall.ps PostScript version of Abridged InterCall
 Manual (180 kilobytes)

If you want, say, the Info.txt document, send the following message to mathsource@wri.com:

 send 0202-587-0011

3.2.3 Calling Mathematica from a FORTRAN Program

The other class of uses of MathLink is where you write the program that the user interacts with,
and use the services of Mathematica in the background. This requires more in-depth use of the
MathLink library, because you will be writing all the code yourself (opening and closing the link,
putting and getting all expressions, checking for and handling errors, etc.) If you need to make
extensive use of MathLink in such a program, it may be easiest to write in C (or at least write the
MathLink-related portions of your program in C). However, since many FORTRAN compilers
allow you to call external functions written in C, it is possible to make MathLink calls directly
from a FORTRAN program. Unfortunately, there are differences in calling conventions and data
representations that need to be overcome.

One approach is to write some "glue" code that acts as a wrapper around the MathLink functions
and serves to translate back and forth between FORTRAN and C conventions. (That's what was
done in the first example above, although it was done in reverse--the glue was so that FORTRAN
could be called from C.) I suppose it would be possible to write the glue code in FORTRAN,
depending on the capabilities of your FORTRAN compiler, but it would be easiest to write in C.
Either way, if you know enough about C to write this glue, then you'll probably want to just do
the whole project in C. Fortunately, someone else has already written a basic glue library, and it
is available on MathSource, although it has not been updated for a while. I have not used it
myself, but I have no reason to believe that it doesn't still work. To get it, send a message with
the following body to mathsource@wri.com:

 send 0205-434

This package provides a C source file that encapsulates a basic set of MathLink calls in such a
way that they can be called from FORTRAN. You compile the file (with a C compiler, of course)
to create an external library that provides a number of functions that you can call from
FORTRAN, instead of directly using the functions in the MathLink library itself.

MathLink Tutorial 43

