MathLink Tutorial 1

A MathLink Tutorial

Todd Gayley
Wolfram Research

MathLink is a library of functions that implement a protocol for sending and receiving

Mathematica expressions. Its uses fall into two general categories. The easiest and most common
application is to allow external functions written in other languages to be called from within the
Mathematica environment. If you have an algorithm that needs to be implemented in a compiled
language for efficiency reasons, or if you have code that you don't want to rewrite in

Mathematica, it is a relatively simple matter to incorporate the routineshitatnematica. This use

of MathLink is treated in the first chapter of this tutorial.

The second use dathLink is to allow your program, running in the foreground, to use the
Mathematica kernel in the background as a computational engine. In effect, the program is a
"front end" for theMathematica kernel. This requires a deeper understandingatfLink, and is
treated in the second chapter.

Each of these two chapters is designed to stand on its own, so there is some repetition. There are
also topics that are relevant to MiithLink programmers that are treated more fully in one chapter
than in the other. | strongly recommend that you read both, but keep in mind that some of the
information may not apply to you, depending on how you plan td/asie_ink.

This document is designed to supplement the information il #ialink Reference Guide,

which is the main documentation fidiathLink. There is also some information on newer features

of MathLink in theMajor New Feautres of Mathematica Version 2.2 document, which comes

with Version 2.2, and is also available on MathSource. My intention here is to flesh out some
details, provide useful code fragments, discuss some underdocumented features, and show how
to accomplish some common tasks.

The information presented here refers to Version 2.2\2atifiLink and later. Most of the
information is also correct for earlier versions, but a few of the functions and features may not be
present.

MathLink Tutorial

1. Calling External Programs from the
Mathematica Kernel

1.1 The Simplest Example: addtwo

1.2 Using :Evaluate: to Include Accessory Mathematica Code
1.3 Putting and Getting Arguments Manually

1.4 Passing Lists and Arrays

1.5 Passing Arbitrary Expressions

1.6 Requesting Evaluations by the Kernel

1.7 Error Handling

1.8 Troubleshooting and Debugging

1.9 Large Projects

1.10 Special Topics

2. Calling the Mathematica Kernel from
External Programs

2.1 A Simple Program

2.2 Opening a Link to the Kernel

2.3 Sending Expressions to the Kernel

2.4 Receiving Expressions from the Kernel
2.5 Blocking, Yield Functions, and All That
2.6 Graphics

3. Using Other Languages
3.1 C++
3.2 FORTRAN and Others

MathLink Tutorial 3

1. Calling External Programs from the
Mathematica Kernel

| will refer to external functions that are called friviathematica as "installable” functions, since

they use thénstall mechanism to be incorporated into Mathematica environment. The

intent is that you should be able to take pre-existing C language routines, and with as little effort
as possible (ideally with no source code changes to the routines themselves), package them so
they can be called froidathematica. For each function you want to call frdiathematica, you

write a template entry that specifies the name of the function, the arguments that the function
needs to be passed and their types, and the type of argument it returns. This template file is then
passed through a tool called mprep, which writes C code that manages most, possibly all, of the
MathLink-related aspects of the program.

| want to emphasize how easy, even trivial, it is to perform these steps for many external
functions. With just a little more effort you can handle unusual functions or more sophisticated
communication. ThdlathLink Reference Guide is perhaps a little intimidating, but some of the
information is not directly relevant for programmers who merely want to call external functions
from Mathematica. | hope that this chapter will encapsulate much of the information you need in a
concise form.

1.1 The Simplest Example: addtwo

Let's look at a trivial example of an installable program, the addtwo program that is supplied with
MathLink. We will modify the program in several ways to demonstrate more advanced
techniques. Here is the C source file addtwo.c:

#include "mathlink.h"

int addtwo(int i, int j) {
return i+j;

}

int main(int argc, char* argv(]) {
return MLMain(argc, argv);

}

Note that if you already had a C routine that tookitwa and returned ant , all you would

have to do to make it installable would be to insert the oneskimefunction (actually, for
Windows usersain is slightly more complicated, but it is still something that can simply be
pasted into your own code). Thein function is simply a "stub" that calls the real main function
(namedviLMain), which is written by mprep.

Here is the template file addtwo.tm:

:Begin:
:Function: addtwo

MathLink Tutorial 4

:Pattern: AddTwol[i_Integer, j_Integer]
:Arguments: {i,j}

:ArgumentTypes: { Integer, Integer }
‘ReturnType: Integer

:End:

The:Function: line specifies the name of the C routine. THatern: line shows how the
routine will be called ilMathematica. The pattern given on this line will become the left-hand side
of a function definition, exactly as you would type it if you were creating the entire function in
Mathematica. The:Arguments: line specifies the expressions to be passed to the external
program. These expressions don't have to be the same as the variable namesat@mthe

line, although they often will be. You could, for example,{pos[i], j*3} . The point is that
what you put on thePattern: line and theArguments: line isMathematica code; it will be

used verbatim in a definition that could be caricatured as follows:

AddTwol[i_Integer, j_Integer] :=
SendToExternalProgramAndWaitForAnswer[{i, j}]

The:ArgumentTypes: and:ReturnType: lines contain special keywords used by mprep to
create the appropriakéLGet andMLPut calls that transfer data across the link.

The details of building the executable from the addtwo.tm and addtwo.c source files differ from
platform to platform. On Unix, you will usually use the mcc script that comedWethematica.
You would use a line like

mcc addtwo.tm addtwo.c -0 addtwo

The steps that mcc performs are as follows: (1) run mprep on the .tm file, to create a .tm.c file;
and (2) compile and link all the source files, including the .tm.c file, specifying to the 'cc’
compiler where to find the mathlink.h file and tathLink library file (hamed libML.a on Unix
machines). It is the .tm.c file that contains the mprep-generated C source. Normally, this file is
deleted by mcc after it has been compiled, but if you want to see what it looks like you can
prevent its deletion by specifying the -g command-line option to mcc. Advanced users of
MathLink can learn a lot by studying this file. On Macintosh and Windows, the steps to build the
program will be different, and you should consult the README file that comes\Waithi_ink.

The mcc method is convenient for simple projects, but it has some drawbacks, one of which is
that it is hard-coded to call the 'cc’ compiler. You might want to skip mcc altogether and write
your own makefile. In that case, you will be calling mprep yourself. Here's an example:

/math/Bin/MathLink/mprep addtwo.tm -0 addtwo.tm.c

Note that mprep is not on your Unix path, so you will need to specify the full pathname. The
MathLink library, libML.a, is also located in the math/Bin/MathLink directory, and the mathlink.h
file is in math/Source/Includes.

To use thexddTwo function inMathematica, you launch the external program with theall
function:

link = Install["addtwo"]
LinkObject[addtwo, 2, 2]

The functionLinkPatterns ~ shows what functions are defined by the external program
associated with a given link:

MathLink Tutorial 5

LinkPatternslink]
{AddTwoli_Integer, j_Integer]}
AddTwo[3,4]

7

You may wonder, "How does the definition fatdTwo appear irMathematica?" After all, the
only thing we've done is start up the kernel, typall , and suddenlathematica knows
about a function calledddTwo. The answer is that the external program sentitatbematica

the definitions for the functions it exports when the link is first opened. Here's what such a
definition looks like:

?AddTwo
Global’AddTwo

AddTwol[i_Integer, j_Integer] :=
ExternalCall[LinkObject["addtwo", 2, 2], CallPacket[0, {i, j}]

Of course, the programmer never sees any of this process, because it is handled at one end by the
code that mprep writes and at the other end bynt®d code. Most programmers have no

reason to care how this feat is performed, but you should know that all the code involved is
accessible. If you are interested, you might want to take a look at a .tm.c file Mathiamatica

package Install.m, which resides in the StartUp subdirectory of the Packages directory.

1.2 Using :Evaluate: to Include Accessory
Mathematica Code

It was mentioned earlier that when the external program is installed it sends ktatlectoatica

to set up theMathematica side" of the functions it exports. You can also specify arbitrary
Mathematica code to be sent. You might have some accessory code that your functions need to
have exist ifMathematica. A simple example is usage messages.

You can specify arbitrarylathematica code to be sent to the kernel when your program is
installed by using another feature of template files;Bi®uate: line. Here's an example of
specifying a usage message:

:Evaluate: AddTwo::usage = "AddTwo[i, j] adds two integers."

:Begin:

:Function: addtwo

:Pattern: AddTwol[i_Integer, j_Integer]
:Arguments: {i,j}

:ArgumentTypes: { Integer, Integer }
‘ReturnType: Integer

‘End:

Defining messages is a trivial example of the usewvafuate: lines. Another common use is to
make your functions appear in a package context. The current behavisliof is to cause
all functions defined in installable programs to appear iGtbieal” context, not the current

MathLink Tutorial 6

Mathematica context (this behavior may be changed in a future version). This means that if you
want theAaddTwo function to appear in a package context, @@yackage” , then you cannot
do this:

BeginPackage['MyPackage™;

Install["addtwo"]

EndPackage]]
The AddTwo function will still be put into theslobal® context. The best way to handle this is
to put theBeginPackage statement into afEvaluate: line in the .tm file:

:Evaluate: BeginPackage['MyPackage™]
:Evaluate: AddTwo::usage = "AddTwa[i, j] adds two integers."
:Evaluate: Begin["Private™]

:Begin:

:Function: addtwo

:Pattern: AddTwol[i_Integer, j_Integer]
:Arguments: {i,j}

:ArgumentTypes: { Integer, Integer }
‘ReturnType: Integer

:End:

:Evaluate: End[]
:Evaluate: EndPackage|]

Everything that follows atEvaluate: ~ up until the first blank line or line whose first character is
not a space will be sent as a single unit. This means you need to have a sparate for
each separate statement or definition. There is more discussion of theBusieaé: in

Section 1.9, Large Projects.

1.3 Putting and Getting Arguments Manually

Note that in writing the addtwo program and the template, we have not had to make a single
MathLink call. With a little additional effort you can take more control over the passing of
arguments and return values. This would be necessary, for example, if the external function
needed to receive or return expression types that are not among the set handled automatically by
mprep, or if the function returned different types of results (such as an integer or the symbol
$Failed) in different situations.

As an example, we will modify the addtwo program so that it works for larger integers, up to the
long integer size. In the template file, the keywordger on the:ArgumentTypes: and

‘ReturnType: lines causes mprep to create callsitGetinteger andMLPutinteger , which

transfer Gnt s. Instead, we need to clllGetLonginteger ~andMLPutLonginteger , SO we

change these two lines:

:ArgumentTypes: { Manual }
‘ReturnType: Manual

MathLink Tutorial 7

The keywordvanual on the:ArgumentTypes: line informs mprep that we will write our own
calls to get the arguments, and similanhhual on the:ReturnType: line indicates that we will
put the result ourselves. Here's howdhétwo function looks now:

void addtwo(void) {
long i, j, sum;

MLGetLonglnteger(stdlink, &i);

MLGetLonglnteger(stdlink, &j);

sum =i+ j;

MLPutLonglnteger(stdlink, sum);
}

Note the change in the function's prototype. Remember that the actual callddénthefunction

is made from code that mprep writes, so its arguments and return value must match mprep's
assumptions, as determined from #gumentTypes: and:ReturnType: lines of the

template. By specifyin@lanual on the:ArgumentTypes: line, you tell mprep to pass no
arguments taddtwo when it is called. Similarly, by specifyinganual on the:ReturnType:

line, you tell mprep to ignore any return value.

It is possible to usianual on one of these lines and not the other. It is also possible to mix
Manual with other types on th@rgumentTypes: line. For example, if you want to have the
first argument read automatically but get the second one yourself, you can write:

:ArgumentTypes: { Integer, Manual }

In this case, theddtwo function would be written to take oime argument, and inside it there
would be one call toLGetinteger . If you useManual on the:ArgumentTypes: line, it must be
the last type in the list. In effestanual means "l want to get all the remaining arguments from
the link myself". You cannot specify

:ArgumentTypes: {Integer, Manual, Integer }

It is likely that the arguments you will be passing to your function are among the set handled
automatically by mprep (integers, reals, lists of these, strings, and symbols). In this case it is
quite convenient to have mprep take care of this part dflétielink communication. However, |
recommend that you manually return resultslethematica. It only takes one line of code to send
simple types back, and for any of the more advaiMatLink techniques described below, you
will need to have control over what is sent back and when.

1.4 Passing Lists and Arrays

Another case where you need to useMhsual keyword is when you need to return a list to
Mathematica. TheMathLink sample program bitops demonstrates this. For our purposes only one
of the functions defined in bitops.c is relevant: the funcateaiplements , which takes a list of

integers and returns a list of the bitwise complements of the integers. Here is the template entry in
bitops.tm:

:Begin:
:Function: complements

MathLink Tutorial 8

:Pattern: BitComplements[x_List]
:Arguments: {x}

:ArgumentTypes: {IntegerList}
:ReturnType: Manual

:End:

There is a keyworthtegerList that can be used on thegumentTypes: line, SO you can
have mprep get the list for you, but you cannot use it irRthenType: line--you have to use
Manual and put the result list yourself. Here is the C function:

void complements(int px][], long nx) {

long i;
int *cpx;

cpx = (int *) malloc(nx);
for(i=0; i < nx; i++)

cpxi] = ~ px[i] ;
MLPutIntegerList(stdlink, cpx, nx);
free(cpx);

}

Note that we have specified only one argumenttagerList , to be passed to the external
function, but the function itself is written to take an integer array followed by a long integer.
Confusion over this is a source of many user errors. When the mprep-generated code reads the
list of integers, it will determine the length of the list and pass this to your function. Sometimes
users mistakenly believe that they must themselves pass the length of the IMafhematica,

so they erroneously write therguments: and:ArgumentTypes: lines like this:

:Arguments: {x, Length[x]}
:ArgumentTypes: {IntegerList, Integer}

The long parameter that will receive the length of the list always comes immediately after the list
itself in the arguments to your function. For example, if you need to receive a list of integers, a
list of reals, and an integer, you would write thgumentTypes: line like this:

:ArgumentTypes: {IntegerList, RealList, Integer}
and the function prototype would look like:
void func(int ilist[], long ilen, double rlist[], long rlen, int j);
To put the result list back tdathematica, you can uselLPutintegerList Or MLPutRealList

In addition to putting and getting lists of integers and douMetjLink has some new functions

for putting and getting multidimensional arrays in a single step, for examgkeDoubleArray
andMLPutDoubleArray . Check the mathlink.h header file for the complete set. The easiest way
to describe these functions is to show a sample program. The following is an example function
that creates an identity matrix of size n:

void identity _matrix(int n) {

long dimensions[2];

char *heads[2] = {"List", "List"};
long depth = 2;

int *mat;

MathLink Tutorial 9

int ij;
mat = (int*) calloc(n * n, sizeof(int));
for(i=0; i<n; i++)

for(j=0; j<n; j++)
ifi==)matfi+j*n] =1,

dimensions[0] = dimensions[1] = n;
MLPutintegerArray(stdlink, mat, dimensions, heads, depth);

free(mat);

}

The "Array " functions are similar to theiList " counterparts. In ButArray ~ function, instead

of along length parameter, you pass an arragmaf s giving the length in each dimension. The
heads parameter is an array afar* that give the heads in each dimensiost (in most

cases). If the heads ariet in each dimension, you can simply passL in place otheads .

Here's a complete example showing the useéLdfetDoubleArray andMLPutDoubleArray
The function transposes a matrix of reals:

:Begin:
:Function: transpose
:Pattern: MyTranspose[l_?MatrixQ]

:Arguments: {
:ArgumentTypes: {Manual}
‘ReturnType: Manual
:End:

void transpose(void) {

long *dimensions;

char **heads;

long depth;

double *data;

int i, j;

double *tdata; /* put the transposed array here */
long tdimensions[2]; /* reverse of dimensions */

MLGetDoubleArray(stdlink, &data, &dimensions, &heads, &depth);
tdata = (double*) malloc(sizeof(double)*dimensions[0]*dimensions[1]);
for(i=0; i<dimensions[0]; i++)

for(j=0; j<dimensions[1]; j++)

tdata[i + j * dimensions[0]] = data[j + i * dimensions[1]];

tdimensions[0] = dimensions[1];
tdimensions[1] = dimensions|[0];

MLPutDoubleArray(stdlink, tdata, tdimensions, heads, 2);

MathLink Tutorial 1C

free(tdata);
MLDisownDoubleArray(stdlink, data, dimensions, heads, depth);

}

Note the call tovLDisownDoubleArray . Whenever you useLGet to receive an object whose

size cannot be known at compile time (e.g., a string, symbol, list, or aat).ink reads the

object into its own memory space and gives you only the address of the data. For example, in
MLGetString , you pass the address afrar* (i.e., achar**), andMathLink stuffs the address

of the string it received into yodhar* . You'll note that you haven't had to allocate any memory
yourself or worry about how big the data is. At this pditdfhLink "owns" the data, and it is
waiting for your permission to free the memory that it occupies, which you grant when you call
theMLDisown functions. Between the time you celllGet andMLDisown, you can only read the
data--do not try to modify it in place. If you need to do that, allocate your own memory and copy
the data into it€.g., usingstrcpy).

Note that you need to worry about callmgbisown functions only if you calMLGet yourself.
For strings, symbols and lists that mprep gets automatically for you, it takes care of calling the
appropriatebisown functions after your function returns.

1.5 Passing Arbitrary Expressions

MathLink has functions for passing all native C types, along with single- and multidimensional
arrays. There are times, though, when you need to send or receive expressions that do not fit
neatly into C types. Your function might need to return a list of mixed integers and reals, or a list
of lists that is not a matrix, or something even more complicatethtikgate[x"2,

{x,0,1}1 . How do you go about transferring expressions like these?

I will focus on returning such expressions from an external function. It is less likely that your
function would want to receive such expressions. It is certainly possible to receive complex
expressions, but what would you do with them? You'd have to write your own code to analyze
them and extract the desired information. If you need to deal with complicated expressions in
your external functions, you'd be better off writing some code oll#tieematica side that acts

as a "wrapper" around your template functions, manipulating and decomposing the expressions
into meaningful C-size chunks, and sending these instead. This type of chore is more easily
programmed in th®lathematica language.

You send expressions ovMdiathLink in a way that mimics therullForm representation.

There areMathLink functions for the necessary "atomic" types (integers, reals, strings, and
symbols), and if you need to put a "composite” expression (something with a head and zero or
more arguments), you ustPutFunction to put the head and the number of arguments, then
MLPut calls for each of the arguments in turn. For example, to puiittigeate expression
above, you would use:

MLPutFunction(stdlink, "Integrate”, 2);
MLPutFunction(stdlink, "Power", 2);
MLPutSymbol(stdlink, "x");
MLPutinteger(stdlink, 2);
MLPutFunction(stdlink, "List", 3);
MLPutSymbol(stdlink, "x");

MathLink Tutorial 11

MLPutinteger(stdlink, 0);
MLPutinteger(stdlink, 1);

Of course, if you want to return an expression like this from your function, you will need to
declare amanual return type in the .tm file.

A very common error is attempting to put more than one expression from the external function.
An external function, just like any built-in function, cannot return two things. In the earlier
examples, we sent complex expressions babkatbematica, but always only one of them. Here

Is an example of this error:

void return_two(void) {
inti, j;

MLGetInteger(stdlink, &i);
MLGetInteger(stdlink, &j);

MLPutinteger(stdlink, i);
MLPutinteger(stdlink, j);

}

The two integers returned need to be wrapped in a head of some sort so that they become part of a
single expression. The put calls need to be written like this:

MLPutFunction(stdlink, "List", 2);
MLPutinteger(stdlink, i);
MLPutinteger(stdlink, j);

1.6 Requesting Evaluations by the Kernel

The external function can request evaluation§lbaghematica between the time it is called and the
time it returns its result. For example, you might wdathematica to assist you in computing
something, or you might want to trigger some side effect such as displaying an error message.
TheMathLink functionMLEvaluate is designed for this purpoS@LEvaluate takes a string
argument that will be interpreted Mathematica as input. The result will be returned to your
function as an expression wrapped with the rRmadmPacket . You should read this
ReturnPacket from the link whether you care what is in it or not.

As an example, let's go back to thtwo function and say you want to detect an overflow
when adding the twiong integers (that is, a sum that is outside the rangéoo§ 9. If an
overflow occurs, you want to show an error messadathematica and then return the symbol
$Failed instead of the sum.

You can us@/LEvaluate to trigger the message, but how do you get the definition of the
message intMathematica in the first place? You use @&valuate: line in your .tm file:

:Evaluate: AddTwo::ovflw ="The sum cannot fit into a C long type."
Theaddtwo function now looks like this:

void addtwo(void) {

MathLink Tutorial 12

long i, j, sum;

MLGetLonglnteger(stdlink, &i);
MLGetLonglnteger(stdlink, &j);
sum =i+j;
if(i>0 && >0 && sum<0 || i<0 && j<0 && sum>0) {
MLEvaluate(stdlink, "Message[AddTwo::ovflw]");
MLNextPacket(stdlink);
MLNewPacket(stdlink);
MLPutSymbol(stdlink, "$Failed");
}else {
MLPutLonglnteger(stdlink, sum);

}
}

After the call toMLEvaluate , Mathematica will send back &eturnPacket containing the
return value of th&lessage function (which is simply the symballl). You need to drain
this packet from the link, so you ca&lLNextPacket (which will returnRETURNPK)rand then
MLNewPacket to discard the contents. If you wanted to read the contents BétinePacket
then you would replac@LNewPacket with an appropriate series @t Get calls. As an example,
let's say you wanted to haMathematica compute a Bessel function for you. Here's how you
would send the request and read the result:

MLEvaluate(stdlink, "BesselJ[0, 5.0]");
MLNextPacket(stdlink); /* a RETURNPKT will be waiting */
MLGetDouble(stdlink, &my_double); /* inside there will be a real */

MLNextPacket , MLNewPacket, and thevLGet functions are discussed in more detail in the
second chapter of this tutorial, where they are used more extensively.

UsingMLEvaluate is not the only way the external function can send cotiatbematica for
evaluation. Anything sent wrapped in the heaaluatePacket will be treated in this way. In
fact,MLEvaluate is merely a convenience function whose code just creates the expression
EvaluatePacket[ToExpression["the string"]] and sends this tMathematica.

After Mathematica calls your external function, it reads from the link, expecting to find the final
result. The headvaluatePacket tells Mathematica "This is not the final answer. Evaluate

this and return the result to me wrappe@&émrnPacket . Keep waiting for the final answer."

In this way, the external function can initiate dialogs of arbitrary length and complexity with the
kernel before it returns.

If it is most convenient to send the code you need evaluated as a string (for example, if the code is
known at compile time), you can ugeEvaluate . In some cases, though, it may be easiest to

send it as an expression wrappedvaluatePacket . In the above example computing

Besseld , it is likely that the arguments Besseld will be variables in your own program, not
constants embedded in a string. Rather than constructing a string and sending it with

MLEvaluate , you might want to replace tivtEvaluate line with the following lines:

MLPutFunction(stdlink, "EvaluatePacket", 1);
MLPutFunction(stdlink, "BesselJ", 2);
MLPutinteger(stdlink, my_int);
MLPutDouble(stdlink, my_double);
MLEndPacket(stdlink);

MathLink Tutorial 13

You read the resultingeturnPacket in the same way as before.

1.7 Error Handling

Ouraddtwo function is still missing an extremely important aspedflathLink programming:

error checking. Mos¥lathLink functions return O to indicate an error has occurred, and you

should check their return values, at least for the reading functions. If you continue to issue
MathLink calls after an error has occurred, without clearing the error, things will no longer work
as expected. Specifically, the link simply refuses to do anything until you clear the error.
Checking fomMLGet errors is handled for you by the code that mprep writes for any arguments
that are read automatically. If you don't do any manual getting of arguments, then you don't have
to worry about error checking. For amyGet calls that you write yourself, it's up to you.

The exact series of steps you take after an error has been detected depends on whether you want
to try to recover or not. If amLGet call fails, the easiest thing to do is to simply abandon the

external function call completely and return the synsisaied . It would be more informative

to trigger some kind of diagnostic message. TheréviataLink function called

MLErrorMessage , Which returns a string describing the current error, and this string is a good
candidate for use in an error message to be seen by the user. Here is a code fragment that
demonstrates how to detect an error, issue a useful message, and then safely bail out of the
function call. For eachiLGet-type call in your code, you can wrap it with something like:

if(IMLGetLonglnteger(stdlink, &i)) {
char err_msg[100];
sprintf(err_msg, "%s\"%.76s\"%s",
"Message[AddTwo::mlink,",
MLErrorMessage(stdlink),
T);
MLClearError(stdlink);
MLNewPacket(stdlink);
MLEvaluate(stdlink, err_msg);
MLNextPacket(stdlink);
MLNewPacket(stdlink);
MLPutSymbol(stdlink, "$Failed");
return;

}

Naturally, if you have more than one or twoGet calls in your code, you would want to
implement this as a function or macro. Upon detecting the error, the first thing you do is call
MLClearError to attempt to remove the error condition, and terewPacket to abandon the

rest of the packet containing the original inputs to the function (in case it hasn't been completely
read yet). Theprintt is used to construct a string of the form

"Message[AddTwo::mlink, \"the text returned by MLErrorMessage\"]"

which is what is sent tdLEvaluate . The gyrations required to produce this string using

sprintf are a bit clumsy; this is getting close to a case where it would be easiest to send the code
as an expression rather than a string, as demonstrated earlier. The remaining lines are the same as
in the previous example ofLEvaluate . The message triggered hesddTwo::mlink , needs

to be defined in arEvaluate: line in the addtwo.tm file as follows:

MathLink Tutorial 14

:Evaluate: AddTwo::mlink = "There has been a low-level MathLink error.
The message is: "1°."

Now let's see these error messages in action. Earlier, we introducedithe:ovflw error
message, to be triggered when the two integers can be read from the link properly, but their sum
Is detected to have overflowed:

AddTwo[2000000000, 1000000000]
AddTwo::ovflw: The sum cannot fit into a C long type.
$Failed

TheAddTwo::mlink error is triggered whenever the arguments are not read properly by
MLGetLonginteger , which will be the case if either one is too large to fit intoleng type:

AddTwo[5000000000, 1]

AddTwo::mlink:
There has been a low-level MathLink error. The message is:
machine integer overflow.

$Failed

1.8 Troubleshooting and Debugging

If you get either one of these two errors when yourissall["progname”]
LinkOpen::linkf: LinkOpen[progname] failed.
LinkConnect::linkc: LinkObject[progname, 1, 1] is dead; attempt to connect failed.

then either the program is not being found, or it is launching and then immediately crashing. If
youlinstall — a program that exists but is not propevigthLink-aware, thenmnstall will

hang until you abort itnstall does not interpret the string you give it, and in particular it does
not search the directories ®Path (this behavior may change in the future). The directories it
does search are dependent on factors outsiliatbematica, such as the operating system and

shell. On Unix, for example, the path that is searched is the path inherited by shell processes
launched by the kernel. You may need to give a complete pathname to the program. To make sure
that your program is at least minimally able to run, simply launch it from the command line (under
Unix) or by double-clicking it (Macintosh or Windows). You should get a "Listen on:" prompt,
which you can dismiss, followed by a "Connect to:" prompt, which you also dismiss, at which
point the program will exit.

If your program passes the above test, but otherwise behaves unexpectedly, then a few simple
debugging techniques will likely pinpoint the error. If the program crashes because of something
in your computational code, or if it exits because you are hdatlgLink calls incorrectly, you

will probably see the following message:

LinkObject::linkd:
LinkObject[progname, 18, 3] is closed; the connection is dead.

In most cases, there is a simple error in WathLink code. Most of thdlathLink functions
return O to indicate that an error has occurred. Go back into your source and insert statements to

MathLink Tutorial 15

check the return values of eadathLink function (start with the reading
functions-MLNextPacket , MLNewPacket, and anything witlget in its name).

If you want to run your installable program with a debugger, you will generally need to launch it
inside the debugger, and then establish a connectioMaitiematica manually, rather than
havingMathematica launch your program automatically. This issue is discussed Matinkink
Reference Guide, along with an example using the Unix gdb debugger. The details differ from
platform to platform, but the concept is the same. One side of the link needs to open in Listen
mode, and the other side then uses Connect mode to connect to that listening link. Which side
does which is not important; in my example | reverse the roles Matie.ink Reference Guide
example. Begin by launching the program in your debugger. You will get a "Listen On" prompt,
to which you give an arbitrary link name (on Macintosh and Windows, these are arbitrary strings,
like myLink; on Unix, they will be numbers, 5000 for example). Now, switdfdthematica

and type:

link = Install["name", LinkMode->Connect]

wherename is the linkname you specified to the "Listen On" prompt. Use string quotes around
the name, even if it is a number (you don't use string quotes earlier, when you reply to the Listen
On prompt). Note thatstall ~ can take the same sort of arguments ith&Open takes.

Here, we give a linkname as the first argument (when we Mathematica to launch the

program, this is just the filename), and specify link options as well.

1.9 Large Projects

The examples so far have all been single functions. They are a good model for the occasional
numerical function that you want to incorporate itathematica. The potential for installable

functions is much greater, though. You can create entire packages or sets of packages,
implemented in one or more external programs, that effectively "graft" new capabilities onto the
kernel. Some special issues arise when considering larger projects based on installable programs.

First, you will undoubtedly need to write soiathematica code to go along with your C

functions. | suggest writing "wrapper" functionshifathematica that perform the handling of

options, some processing of arguments and error checking, and other tasks that are more easily
done inMathematica. These are the functions that are visible to the user, and they then call private
functions that are the ones named in templates and map directly to functions in the external
program. You can develop very sophisticated interactions between theMaitwedhatica code.

Through the use oEvaluate: lines in your .tm file, you can embed your entire package code in
the program source files, so that there is no separate .m file to be loaded. The advantage to this is
convenience for users (they can justall the program and be ready to go), but the

disadvantage is that any modification of the package code requires that the program be
recompiled. Chances are that your users will not be doing this, though, and during development
you can keep the package code in a separate .m file.

The basic decision is whether you will have the package code embedded in the external program,
so what the user typeslistall['progname"] , or have a package (.m) file that calls

Install within it, so what the user types<sPackagename™ . The problem with the latter
approach is that users need to either: (1) always give the program a predetermined name and
always put it someplace it will automatically be foundrsyall , or (2) edit the .m file to

MathLink Tutorial 16

reflect what they choose to name the program and the pathname where they put it. The advantage
to this approach is that it makes your program behave more like a seamless extension to the
kernel. Specifically, the context-handling functions will work correctly with it, so that users use

Get andNeeds with your package name just like any other package name, and may even be
unaware that an externdiathLink program is involved. Having written significant programs that

use both approaches, | recommend the second method, writing your package code in a .m file that

callsinstall internally.

You can embed C code in a .tm file, and it will be passed along unchanged by mprep. This means
that you don't need a separate .c file, and this is convenient if your code is not long or
complicated. In fact, all your code--templates, package code, and C code--can be included in one
.tm file if desired. Here is a sample of the suggested structure of such a .tm file:

:Evaluate: BeginPackage['MyPackage™]
All of the package code is here, in :Evaluate: sections...
:Evaluate: FirstFunction::usage = "FirstFunction does..."
etc....
:Evaluate: EndPackage]]
The C code begins:
#include "mathlink.h"
void template_funcl() { ...
etc....
Templates begin:
:Evaluate: Begin['"MyPackage Private™]

:Begin:
:Function: template_funcl

etc....

:Evaluate: End[]

If you are writing a commercial-quality program, make sure that your external functions behave
as if they were well-written built-in functions. This means, among other things, that they should
be abortable, and they should retMathematica-style messages for all errors or warning
conditions.

MathLink Tutorial 17

1.10 Special Topics

Hm1.10.1 If You Don't Know the Length of the Result

Notice that you have to specify the number of arguments that will follow in every

MLPutFunction call. Sometimes it is inconvenient to have to know ahead of time the number of
arguments that you will send. For example, you might be running a loop, generating one element
of the result list in every iteration, and you don't know ahead of time when the loop will end.
There are a couple of tricks for getting around this problem.

One method doesn't involwathLink at all--you just allocate enough local storage in your C
program to hold all the elements, counting them as you place them in this storage, and when you
are finished you put them on the link in the usual way. This is relatively easy, except you have to
deal with the hassle of memory management in C. You may need to do a lot of allocating and
reallocating memory to hold the result as it grows, and you need to be sure you free it all before
returning.

It would be easier just to send the elements as they are generated. Then you would need to
allocate only enough storage to hold a single element, reusing the same space for each successive
element. One way to do this is to create a nested list wrappeden . If you think about it,

you'll see that you never have to make any promises about the total number of elements that will
appear in the final flattened list. Every sublist contains two elements: an integer (in this particular
example) and another sublist. When all the integers you need have been sent, you send two empty
lists (to fulfill the final promise of two arguments), which will be obliterated byrtiren

The expression that is sent might look lketten[{1,{2,{3,{4,{{},(}}}}}}] , Which
evaluates t91,2,3,4} . It's actually a bit more complicated, since if you send a list that is

nested too deeply, you will hiathematica's $RecursionLimit , and trigger an error. The

way around this is to temporarily si#ecursionLimit toInfinity , which is best done by
localizing its value in &lock . Thus, the actudathematica code you will send will look like:

Block[{$RecursionLimit = Infinity},
Flatten[{1,{2.{3.{4 {{}, (}}1}}}]

The sequence dflathLink calls to send this is straightforward:

MLPutFunction(stdlink, "Block", 2);
MLPutFunction(stdlink, "List", 1);
MLPutFunction(stdlink, "Set", 2);
MLPutSymbol(stdlink, "$RecursionLimit");
MLPutSymbol(stdlink, "Infinity");
MLPutFunction(stdlink, "Flatten", 1);
MLPutFunction(stdlink, "List", 2);
while(not_finished) {

/* Here is the computation that generates the elements of the
result. This would probably be the main computational section
of your function. */

i = generate_next_element();

MLPutinteger(stdlink, i); /* or whatever the list elements are */

MLPutFunction(stdlink, "List", 2);

MathLink Tutorial 18

}
MLPutFunction(stdlink, "List", 0);

MLPutFunction(stdlink, "List", 0);

This may look complicated, but it's just "boilerplate” code that can be pasted into your program
where necessary.

If the elements of the result list are themselves lists,rla@an will not work since it will

flatten out the sublists as well. You can use:l instead in this case.

Level[listOfLists, {-2}] extracts those expressions of depth 2 from the nested list,
which is what you want if the elements of the outer list are simple lists. If they are matrices, use
{-3} asthe,evel specification, since a matrix has depth 3.

This is an interesting example because what you send biliathematica is in effect a

"program", the execution of which produces the results. Of course, adigmatica

expression is a "program" and vice-versa, but it is a conceptually useful mental leap here. There
are lots of other programs you can send that will evaluate to the desired list (a method similar to
the above could be basedam), and you can even do something as fancy as sending back a
program that itself reads from the link, collecting the elements until it reads an "END" marker.
Once you start thinking in these terms, a wealth of sophisticated interactions become possible.

Another method for dealing with the problem of not knowing ahead of time how many elements
will be in the result list involves the use of a "loopback link", and it is described in the next
section. This method is the most elegant and probably the most desirable, except in cases where
the speed of thelathLink transfer is the most important consideration.

W 1.10.2 Loopback Links

Beginning in Version 2.2 dflathematica, a new link mode was introduced--the "loopback” mode
(joining Launch, Listen, and Connect). This link type is quite useful, but underuséatiyink
programmers. Brief documentation for loopback links can be found Madjae New Features of
Mathematica Version 2.2 document.

A loopback link is a link that "points back™ at you. You both write to and read from it. You can
think of it as a U-shaped track onto which you can place expressions for storage and later
examination or retrieval. If you think about it, you'll see that loopback links effectively give the C
progammer dMathematica expression "type".

There are a lot of interesting things you can do with loopback links, but | will focus on one
application of great use in installable programs. This is to solve the problem discussed in the
previous section: how to send an expression (like a list) badhttematica when you don't

know in advance how many arguments it will have. The loopback link provides a very simple
solution--as you generate the elements of the result list, put them on a loopback link, not the link
back to the kernel, counting them as you go. Then when it comes time to send them to
Mathematica, you know how many there are, and you can specify this when you use
MLPutFunction to put the enclosingist .

The loopback link method for solving this problem has an additional advantage over the nested
list method mentioned in the last section. It may be that during the generation of the result list you
encounter an error condition or some other circumstance where you no longer want to send the
list at all (you might want to send the symbpdiled instead, and you might want to trigger an
error message). If you are putting the result on a loopback link, you don't send anything to the

MathLink Tutorial 1¢

kernel until the computation is finished, and you can decide at that time to send whatever you
want.

You open a loopback link in the usual way, except you specify "loopback™ as the linkmode. Let's
look at a complete function that returns a list of integekéaibiematica by first placing them on a
loopback link.

void foo(void) {

inti, num_elements;
char loopback_argv[3] = {"-linkmode", "loopback"”, NULL};
MLINK loopback;

loopback = MLOpen(2, loopback_argv);
if(lloopback) {
/* might want to issue a message as well */
MLPutSymbol(stdlink, "$Failed");
return;

}

num_elements = 0;
while(some_test) {
i = generate_next_element();
MLPutinteger(loopback, i);
num_elements++;

}

MLPutFunction(stdlink, "List", num_elements);
for(i=1; i<=num_elements; i++) MLTransferExpression(stdlink, loopback);

MLClose(loopback);
}

Note the use aflLTransferExpression to move the integers from the loopback link to the

kernel link. This function is described in thkajor New Features of Version 2.2 document. It
provides a very convenient means for moving expressions from one link to another, since you
don't need to be concerned with the exact structure of each expression. The destination link is
given first, the source link second.

The above method is similar to storing the integers in memory allocated and maintained by you in
your C program. The advantage of using a loopback link is that ymatekink deal with all the
memory-management issues. There are no callalke , realloc orfree , or checks for

writing past the end of your allocated storage. Memory management would not be difficult in the
case of a list of integers, but if you were accumulating a list of strings or functions, it would be a
big chore, with many possibilities for memory leaks and other bugs.

| cheated a bit, though, in not checking for errors invtreut calls onto the loopback link. An
MLPut might trigger a memory allocation insit#athLink, which could conceivably fail. You

don't really need to worry about this when writingtttink , the link to the kernel, because that
link is being drained by the other side as you pour data into it. A local link will require enough
memory to hold all the data at once, so you should check for errorsvinrthiecalls if you are
storing a lot of data.

MathLink Tutorial 2C

W 1.10.3 Making Your Function Abortable

If your function takes significant time to execute, you will want to make it abortable. That is,

when the user types the usual abort key sequence (Control-C in Unix, Command-period on
Macintosh, etc.), the function should terminate as quickly as possible and return something
appropriate.

To understand how this is done, you need to know that a link actually contains two separate
"channels" of communication. One channel is for the expressions being sent back and forth, and
the other one is for urgent messages that need to be sent out of sequence with the flow of
expressions. Examples are requests to interrupt or abort execution. This second channel is the one
that is managed by th&éssage" functions inMathLink: MLPutMessage , MLGetMessage, and a

few others. Don't confuse these with theErrorMessage function (which returns a string

describing an intern@fathLink error), or the familiaMathematica error messages.

Normally, programmers writing installable functions don't need to worry about the low-level
details at all. Handling messages from the kernel is performed in code that mprep writes for you.
All you need to know is that there is a global varialil@ebort in installable programs whose

value will reflect whether or not the user has requested that the function be aborted. If you are
running a time-consuming loop, you should periodically check the valesobrt . If it is

non-zero, then you should bail out as quickly as possible.

What should your function return Mathematica if the user aborts the evaluation? A quick
answer might be the symb®dborted . Indeed, this is what tHdathLink Reference Guide
suggests, and this is what your function will return if you do notxaseal as the return type in
the template, because then it is the mprep-generated code that takes care of sending the final
answer tdMathematica. That code checks the varialeAbort , and if it is setgAborted is

sent no matter what your function returns.

However, sendingAborted is probably not the ideal behavior. After all, when the user aborts
a calculation that does not involve an external function, the entire evaluation aborts, and
$Aborted is returned as theut[] value. It is not the case that whatever function was
executing at the time the abort was requested resatsted . That is, if you evaluate

flo[x]] , and you abort during the executiongpf] , you don't get[$Aborted] as the

result. Unfortunately, i§ was an external program that returgedorted , this is what you

would get. If you're writing a program that involves calling external functions, you don't want to
worry that an expression deep inside your code is going to evaligtieot@ed instead of
something meaningful simply because the user tried to abort at an inopportune time!

While the external function is executiriathematica captures abort requests and sends them to
the function adathLink messages. AsMathLink programmer, if you want your functions to
behave like built-in ones, it is your responsibility to "propagate” the abort request back to
Mathematica's normal abort-processing mechanisms, which are restored when the external
function returns. You do this by returning not the syn#iaobrted , but rather the function
Abort[] . If you returnabort]] , thenMathematica will halt the entire evaluation no matter
how deep inside it, just like it does with programs written entirelathematica.

The fact that the abort behavior of mprep-generated code is not ideal is another reason to routinely
use thevianual return type and put the resultNtathematica yourself.

MathLink Tutorial 21

Earlier, | said that all you need to know is that there is a global vaxiahtert in installable

programs. This isn't strictly true, however--there is one more detail you need to be aware of. On
systems without preemptive multitasking (Macintosh and Windows), your function needs to yield
the processor so that the kernel has a chance to actually send the abort message to you. You could
write calls to an appropriate function depending on the platfegny ¢n Macintosh, call

WaitNextEvent), but there is an easier solution that will keep your code portable between
systemsMathLink supports something called a yield function, which is discussed more fully in
Section 2.5.2. For now, simply note that template programs define and install a yield function (it

is written by mprep) that calls the appropriate function to yield the processor temporarily to other
programs. Therefore, you can simply call the yield function periodically during your calculation.

Note that manyathLink functions call the yield function themselves internally (including the

Put -type calls). Therefore, you don't need to worry about calling the yield function if you are
makingMLPut calls during your computation (for example, if you are putting pieces of the result
on the link periodically during your calculation). You need to call the yield function only if your
function doesn't make amyLPut calls before checking the valuemiAbort . You also don't

need to do it if you are running under Unix (but you might want to, for portability reasons).

Here is a skeleton of a template program that performs a long calculation and periodically checks
MLAbort . Note thatMLCallYieldFunction is new in Version 2.2.2, and don't worry about
what the arguments mean--just copy the code exactly as it appears below.

void long_function(void) {
int result = 1;

while(some_test && IMLADbort) {
result = perform_computation(result);
MLCallYieldFunction(MLYieldFunction(stdlink), stdlink,
(MLYieldParameters)0);

}

if(MLADbort) {
MLPutFunction(stdlink, "Abort", 0);
/* Contrast with: MLPutSymbol(stdlink, "$Aborted"); */
}else {
MLPutinteger(stdlink, result);
}
}

What if you are sending elements of a result lisflthematica as you go, so that when you

detect an abort you have already sent a partial answer? You cannot "take back” what you've sent
and send something else (likieort[]) instead. However, if you simply callLEndPacket in

the middle of sending an expressiae.{at a place whenmaLEndPacket is illegal), Mathematica

will get the symbolsAborted by default.

In summary, a time-consuming function should periodically check the valuerobrt . You

might need to call the yield function periodically, to allow the kernel process to send the abort
message to you. If you are putting the result badkahematica manually, you should send the
functionAbort]] and return. If you are not usimanual on the:ReturnType: line of the
template file, then you should immediately return a value from your function (it can be garbage,
since it will not be sent tMathematica anyway). The mprep-generated code will send

MathLink Tutorial 22

$Aborted in its place. Finally, if you have already sent part of the result by the time you detect
the abort, you should just calLEndPacket , which will causeMathematica to get the symbol
$Aborted by default.

MathLink Tutorial 23

2. Calling the Mathematica Kernel from
External Programs

UsingMathLink to "install" external programs intdathematica is very useful, but it only

scratches the surface of what can be done. The real poMathifink is that you can add the
computational and programming services ofi\tathematica kernel to your own programs.

MathLink is not just a way to control the kernel, ithe way. When you use the standard
"notebook front end" that ships wilathematica, you are using/lathLink in this way. There is

no privileged communication between front end and kernel--everything takes place via the same
open, documented setMfathLink functions that is available to all programmers.

UsingMathLink to drive the kernel is more complex than writing installable functions because
you have to write all th®lathLink code yourself, and you will be having more complicated
interaction with the kernel.

It is important to remember that you do not use the kernel as if it were a compiled library of
mathematical routines. Rather, you are interacting with a separate program that has its own thread
of execution. You will be running the kernel in so-called "mathlink mode", which means that all

the kernel's input will come from your program, all its output will be directed to your program,

and all communication will take place in the form of "packets”. You have to know the proper way
to send expressions to the kernel, what type of results to expect back, and how to read them off
the link.

Two useful resources you might not be aware of are availatathsource. The first is the
Macintosh program Link Tutor, written by this author, which gives you a point and click interface
for executingViathLink functions. You can execuléathLink functions one at a time in an

interactive session and see the results. It is a good tool for learning what types of packets the
kernel will send you under certain conditions, in what order, and what their contents are. The
other resource is frontend.c, a small C program that implements a more or less complete
terminal-like interface to the kernel. This is a good place to see code for reading out the contents
of all of the packet types you might get from the kernel.

2.1 A Simple Program

Let's look at a simple example of a program that uses the kernel for computation. This program
will launch the kernel, have it calculate the sum of two integers, then close it and quit. We will
look at these specific programming techniques in detail later; for now note the general idea and
how simple it is.

#include <stdio.h>
#include "mathlink.h"

int main(int argc, char * argv[]) {

int i, j, sum;

MathLink Tutorial 24

MLINK Ip;
int pkt;
MLEnvironment env;

printf("Enter two integers:\n\t");
scanf("%d %d", &i, &j);

env = MLInitialize(NULL);
iflenv == NULL) return 1;
Ip = MLOpen(argc, argv);
if(lp == NULL) return 1,

[* Send Plusli, j] */

MLPutFunction(lp, "Plus", 2);
MLPutinteger(lp, i);
MLPutinteger(lp, j);

MLEndPacket(Ip);

[* skip any packets before the first ReturnPacket */
while (MLNextPacket(lp) '= RETURNPKT) MLNewPacket(Ip);

[* inside the ReturnPacket we expect an integer */
MLGetInteger(lp, &sum);

printf("sum = %d\n", sum);
MLClose(Ip);
MLDeinitialize(env);

return O;

2.2 Opening a Link to the Kernel

m2.2.1 MLOpen

TheMathLink function that opens a link iLOpen There are a lot of details about how links are
opened, what protocols are used, and so forth, that are treatedatitthéenk Reference Guide.

| will just briefly discuss some of the main points. You canmusapento launch the kernel

directly from your program, and this is probably what you will most often want taLapen

takes arargc/argv pair of arguments, like theain function of a C program. This is so you can
pass thergc andargv originally passed to your program directly iMoOpen allowing the user

to specify arguments for the link when they launch your progvaudpenwill ignore command

line arguments that do not make sense to it, so you don't have to worry about interference from
arguments that you want your owain function to use. A typical Unix command line to launch

a program that will itself launch a kernel might look like this:

myprog -linkname ‘'math -mathlink’ -linkmode launch

Note that 'math -mathlink' must be quoted so that it is semtdpenas a single argument (the
-mathlink is an argument to math, so in effect there is a command line within the command line).
Alternatively, you can just hard-code tirgv array in your program like this:

MathLink Tutorial 25

int argc = 4;

char *argv[5] = {"-linkname",
"math -mathlink",
"-linkmode",
"launch”,
NULL},

The advantage of allowing the user to specify the link options on the command line is that they
might want to use a linkmode other than 'launch’, or perhaps they will need to specify a different
name for the kernel program than just 'math’'. Of course, you can query the user for link
arguments through prompts or a dialog box if you wish, instead of reading the command line.

The above example was typical for Unix. On the Macintosh, the link name will normally look a
bit different, perhaps the following:

int argc = 4;
char *argv[5] = {"-linkname",
""Hard Disk:Math 2.2:Mathematica Kernel' -mathlink",
"-linkmode",
"launch”,
NULL};

Notice the very important inner set of single quotes around the pathname. Because Macintosh
folder and file names can have spaces in them, it is important that the pathname be enclosed in
single quotes so it is seen insideOpenas a single string, not separate chunks broken up by
spaces.

In Windows, don't forget that C treats the \' character specially in string constants. If you are
embedding filenames into your code, make sure you use two consecutive '\' to indicate a
directory separator, as in this example:

int argc = 4;

char *argv[5] = {"-linkname",
"c:\\wnmath\\math -mathlink",
"-linkmode",
"launch”,
NULL};

m2.2.2 MLConnect

If MLOpenfails, it will returnNULL However, the fact thatLOpenreturns norNULL does not

mean that the link is connected and functioning properly. There are a lot of things that could be
wrong. For example, if you launch a program that knows nothing &baibitink, theMLOpen

will still succeed. There is a difference between opening a link (which involves setting up your
side) and connecting one (which verifies that the other side is alive and well).

If the link cannot be connected, then the fsithLink call you make that tries to read or write
something will fail, or worse, hang indefinitely. Rather than put some special-case test on your
first reading or writing function (which may be physically quite distant in your code from the
MLOpencall), you might want to caliLConnect afterMLOpen MLConnect will try to connect the

link without actually reading or writing anything, and it's a convenient, self-documenting way of
ensuring that the link is functioning properly before proceeding with your prognatonnect

takes a link object as its argument, and returns non-zero to indicate a successful connection.

MathLink Tutorial 26

It's important to note that the.Connect function will block until the connection succeeds or until
it detects a fatal problem with the link. Thus, your program will hang during the startup time of
the kernel (if you calMLConnect immediately afteMLOper). A more serious problem is that if

the user mistakenly launches a program that i84athLink-aware MLConnect will block
indefinitely. Dealing with blocking iMathLink functions is discussed more thoroughly later, but
for now note that there are two strategies: installing a yield function or pelliReady. The use

of MLReady deserves special comment in the present context. Before the link is connected,
MLReady has a special meaning: it tells whether the other side is ready to participate in a
connection. In other words, it tells whetharconnect will block or not. Thus, before you call
MLConnect , you can repeatedly caliLReady, waiting for it to returrmfRUE and perhaps bail out

of the attempt to connect after some period elapses.

Wm2.2.3 Using Listen and Connect LinkModes

You do not have to launch the kernel in your program. If it is already running, users can establish
a connection to your program manually. This is done using the Listen and Connect link modes.
One side must open a link in Listen mode, and the other opens a link with Connect mode,
specifying the listening link to connect to. For example, your program can open a listening link,
announcing to the user what "name" is being broadcast (or letting the user pick a name), and then
the user can manually connect to that link fidiathematica. For example, if you opened a link

on a Macintosh with thisrgv array:

char *argv[5] = {"-linkname",
"myLink",
"-linkmode",
"listen”,
NULL},

then the command iMlathematica to connect to that link would be the following:
LinkOpen["'myLink", LinkMode->Connect]

At this point, the connection will be established so that expressions can be read and written on
each end, but the kernel is still functioning in its normal interactive mode; it has not become a
"slave" to your program (it is not yet in "mathlink mode™). To point the kernel's attention toward
your program, you need to set the kerni#sentLink variable to be the link to your

program:

$ParentLink = %;

(* or, just do it in one line:
$ParentLink = LinkOpen["'myLink", LinkMode->Connect]

")
When you use the Launch linkmode, all this is taken care of for you.

As an experiment, some time when you are using the front end$ryptLink = Null

This will "unattach" the master/slave relationship between front end and kernel. On Macintosh or
Windows, you will see the kernel's terminal-interface window appear in the background. Switch
to it, and you will see that you can now interact with it as if you had launched it by itself, instead
of from the front end. In the kernel window, tygrarentLink = First[Links[]] (this

will point $ParentLink back at the link to the front end, which is still open). Switch back to

the front end, and you should be able to continue with your session.

MathLink Tutorial 27

H2.2.4 MLlnitialize and MLDeinitialize

In the sample program above there is a callLtiaitialize before the link is opened. Starting

with Version 2.2.2, all corredflathLink programs must calliLinitialize before making any
MathLink calls, andMLDeinitialize after closing all opened linkslLInitialize and

MLDeinitialize have never been documented before Version 2.2.2, so it is likely that all
existingMathLink programs do not call them. Does this mean that every exidatig ink

program is suddenly broken when built with version 2.2.2 oMéiaLink libraries? Technically

yes, but in practice there will rarely be a problem. If you are the authdviathhink program

that you distribute in source code form, you should update the code to call these two functions. If
you are currently writing a program, make sure it calls them (this change is backward compatible
with older versions oMathLink).

Note that this is not a concern when writing "installable” functions (treated in the first chapter of
these notes). With installable functions, the mprep tool writes most bfatmink code,
including calls taviLInitialize andMLDeinitialize

Here is how to use them. Declare a variable of iEnvironment and assign it the return value
from MLInitialize . Then pass this variable M.Deinitialize before your program exits.

MLEnvironment env;

env = MLInitialize(NULL);
iflenv == NULL) clean_up_and_exit();
link = MLOpen(....);

MLClose(link);
MLDeinitialize(env);
return;

2.3 Sending Expressions to the Kernel

The things you send witkathLink areMathematica expressions, not just strings or numbers or
some other limited type. Since everythindMathematica is an expression, you have its full
power and expressiveness at your disposal. There are two classes of exprelstatvesriatica:
"atomic" expressions, which have no subparts (these are strings, symbols, and numbers), and
"composite" expressions, which have a head and zero or more arguments. Composite
expressions are things you would write with square brackets, sti¢ch asgx, y]

{1,2,3} (which is a shorthand farist[1,2,3]), 2+2 (which is a shorthand for

Plus[2,2]), andintegrate[x"2, {x,0,1}] . There areviLput functions for the
necessary atomic typedi(PutString , MLPutSymbol , MLPutinteger , etc.), and for composite
expressions you usé_PutFunction . You send expressions using theseut calls in a way
that mirrors theiFullForm representation iMathematica. Thus, to send the expressiarze3,
fix], {5, "a string"}} , you would say:

MathLink Tutorial 28

MLPutFunction(link, "List", 3);
MLPutReal(link, 1.23);
MLPutFunction(link, "f*, 1);

MLPutSymbol(link, "x");
MLPutFunction(link, "List", 2);

MLPutinteger(link, 5);

MLPutString(link, "a string");

If you aren't sure what sequence of calls is required for some expression, just launch
Mathematica, type inFullForm[Hold[expression]] , and the output can be translated
directly into the appropriate calls. Ignore Hd that will be wrapped around the output--it is
included merely to prevent the expression from evaluating (you want to Jeditbhen of the
original expression, not of what it evaluates to).

| mentioned earlier that when the kernel is in "mathlink mode”, it sends all results in the form of
packets, and expects all input in packets. (The use of the term "packet" here should not be
confused with the concept of packets that might exist in some low-level communication protocol;
TCP/IP packets, for example. TRthLink programmer need have no concern over such
low-level issues.MathLink packets are simply functions, "heads" that serve to convey to the
receiving side of the link some information about what to do with the contents. When the kernel
sends back the result of computmg, it sends back the answer wrapped in the do-nothing
function ReturnPacket

ReturnPacket[4]
TheReturnPacket wrapper tells your program that the content is the result of an evaluation.

W 2.3.1 Packets for Sending Things tMathematica

Everything that you send to the kernel should be wrapped in a packet head. There are three packet
types for sending things to the kernel.

O The Mathematica "main loop"

To appreciate the difference between the various packets, you need to understand the concept of
Mathematica's "main loop”. When you uddathematica in the usual way, each input string you

type is fed through a main loop that begins with parsing the string into an expression, evaluating
the expression, and finally turning the resulting expression back into a string for printing to the
screen. An accounting of the steps in the main loop is given in Appendix ATh8 of

Mathematica Book. The steps include application of tblereRead , $Pre , $Post and

$PrePrint functions, and most importantly, assigning theandout values.

The main loop is designed to implement the notion of an interactive "session”, with a history of
inputs and outputs recorded in theandout values. For your use of the kernel, such a notion

may be superfluous. If you are just using it for computational services, you may have no reason
to want a running history of previous inputs and outputs. In this case, you want to circumvent all
the steps in the main loop except the actual evaluation of the expression. On the other hand, if you
are creating your own front end that a user interacts with, you mght want to displayatic

Out prompts, or at least provide a way to recall previous input and output.

The three packet types differ in the form of their contents, the form of the results returned the
kernel, the number and type of packets you will get back, and whether the main loop will be run.

MathLink Tutorial 29

As an example, if the main loop is run, you will always gelnattNamePacket, and
perhaps also aoutputNamePacket , with each evaluation.

O EvaluatePacket

The contents of aBvaluatePacket ~ are an arbitrariathematica expression, which will be
evaluated and the result sent back to you as an expression wrajReeadnPacket . The
main loop is circumvented.

Here is how you would sersd3:

MLPutFunction(lp, "EvaluatePacket", 1);
MLPutFunction(lp, "Plus", 2);
MLPutinteger(lp, 3);
MLPutinteger(lp, 3);
MLEndPacket(Ip);

You may have seen or writtdhathLink code that did not explicitly use a packet head for sending
things. In the past, if you left off a packet heBdhluatePacket ~ was assumed. Be aware

that this behavior is no longer supported; always use a packet head and an explicit call to
MLEndPacket . Note that there is noviLPutPacket " for sending the packet head--since packets
are just functionsylLPutFunction is used.

Building up complicated expressions with a series of these calls is straightforward, but it can be
very tedious. Another way to send somethiniylathematica is as an input string wrapped in the
ToExpression function:

MLPutFunction(lp, "EvaluatePacket", 1);
MLPutFunction(lp, "ToExpression”, 1);
MLPutString(lp, "3 + 3");
MLEndPacket(Ip);

For sending+3 this isn't any easier, but for something Iket3D[Sin[x] Cosly],

{x,0,2Pi}, {y,0,2Pi}] it saves a lot of code. You should use this method whenever it is
more convenient to send code as a string (for example if you know it at compile time, or if you
are reading the input from a file or keyboard).

Keep in mind that what you are sending to the kerrdbitiematica code in all its generality.

Anything that's possible to type intdviathematica session can be sent WaathLink. It may be a

bit clumsier to create expressions with sequencesmit calls, but keep separate in your

thinking the code you want the kernel to execute and the details of "assembling" that code in your
C program.

Say you want not only to send the code as a string, but also to receive the result as a formatted
string, exactly as it is displayed in a normal interadidathematica session. You would do this if

you wanted to display the result to the user (i.e., with all the complicated line-breaking logic for
having multi-line expressions formatted properly). You need merely ask yourself how you would
write Mathematica code that would take a string, turn it into an expression, evaluate it, and then
turn the result back to a string. That code is simply

ToString[ToExpression[“the string"]

The series of functions to assemble this expression and send it from your C program follows
directly:

MathLink Tutorial 3C

MLPutFunction(lp, "EvaluatePacket", 1);
MLPutFunction(lp, "ToString", 1);
MLPutFunction(lp, "ToExpression”, 1);
MLPutString(lp, my_string);
MLEndPacket(Ip);

O EnterTextPacket

The contents of aBnterTextPacket ~ must be a string, which will be sent through the entire
main loop, beginning with parsing E&thematica input. The result of the evaluation will be sent
back to you as a formatted string wrapped Re@rnTextPacket . Since the main loop is
run, you will also get amputNamePacket , and possibly a@utputNamePacket . You

will not get anoutputNamePacket if the calculation returnsull (becauséMathematica
doesn't give output prompts feall return values). Note that the last thing you will get is the
InputNamePacket , because it is the prompt for the next input, not the one you just sent. In
other words, the signal thistathematica is finished dealing with your last input is the arrival of
aninputNamePacket . EnterTextPacket IS not discussed in thdathLink Reference

Guide, but causes the same behavior as usingritee function, and this function is
documented. That is, the following two fragments are equivalent:

MLPutFunction(lp, "EnterTextPacket", 1);
MLPutString(lp, "2 + 2");
MLEndPacket(Ip);

/* OBSOLETE... */

MLPutFunction(lp, "Enter", 1);
MLPutString(lp, "2 + 2");

MLEndPacket(Ip);

The use oEnter is now obsolete. Always usterTextPacket instead.

EnterTextPacket IS what Wolfram Research's own front ends use for sending user input
(which is nothing more than a string of characters when typed in) to the kernel. In future versions
of Mathematica this may change, but the point is that if you want to implement an interface that is
similar to what the standard front ends present (accept user input as a string and print out
formatted output as a string, with prompts), you can send input to the kernel as a string wrapped
In EnterTextPacket . It is possible to implement a primitive interface that looks very much

like the kernel-only "terminal interface” with just a small number of linédathLink code by
usingEnterTextPacket , which is exactly what is done in frontend.c example program,
available orMathSource.

O EnterExpressionPacket

EnterExpressionPacket is like EnterTextPacket in that the main loop is run, except
that the contents of amnterExpressionPacket must be an expression, not a string to be
parsed as code. Furthermore, the result is sent back to you as an expression wrapped in a
ReturnExpressionPacket

MLPutFunction(lp, "EnterExpressionPacket", 1);
MLPutFunction(lp, "Plus", 2);
MLPutinteger(lp, 2);
MLPutinteger(lp, 2);

MLEndPacket(Ip);

MathLink Tutorial 31

Actually, when you us&nterExpressionPacket , only a subset of the main loop is run.

There are some steps at the beginning of the main loop that occur before the input string is parsed
into an expression (application of thereRead function is an example). With

EnterExpressionPacket , you in effect bypass the parsing step because what you send is
already an expression. Similarly, there is a step at the end of the main loop that converts the result
expression to a string for display on the screen (the application g#reint function).

This step never occurs withhterExpressionPacket , since what is sent back is the result

still in the form of an expression.

B Summary of Packet Types for Sending to the Kernel

There are only three packet typ&saluatePacket , EnterTextPacket , and
EnterExpressionPacket . These packet types differ in whether their contents are to be an
expression or a string, whether their results are to be returned as an expression or a string, and
whether they implement the kernel's so-called "main loop".

The one you choose will depend on the answers to the following questions:

Do you want the main input/output loop to be run?

Ask yourself whether you or your users will ever need to refer directly to previous input or
output. If the answer is no, then uB&luatePacket ~ for sending things to the kernel, which
bypasses the main loop. If the answer is yes, thelEuseaextPacket Or
EnterExpressionPacket (the "Enter" in their names conveys the property of running the
main loop).

Do you want to send input as a string or as an expression?

As mentioned earlier, if you are letting users type input for the kernel, or if you know at compile
time some code you want to send, it is easiest to send the code as a string. If you will be using an
EvaluatePacket (based on your answer to the previous question), you can send a string as
follows:

MLPutFunction(lp, "EvaluatePacket", 1);
MLPutFunction(lp, "ToExpression”, 1);
MLPutString(Ip, "some string of Mathematica code");
MLEndPacket(Ip);

If you have decided that you want the main loop, you will be usitgTextPacket Or
EnterExpressionPacket , and the choice between these is whether you want to send a
string or an expression.

Do you want to receive output as a string or as an expression?
If you are usingevaluatePacket — and want to get the result back as a string, use this:

MLPutFunction(lp, "EvaluatePacket", 1);
MLPutFunction(lp, "ToString", 1);
MLPutFunction(lp, "ToExpression”, 1);
MLPutString(Ip, "some string of Mathematica code");
MLEndPacket(Ip);

MathLink Tutorial 32

If you useEnterTextPacket the result will always be a string, and with
EnterExpressionPacket , it will be an expression, although you can force the result
expression into a string in the same way as BtliuatePacket , by wrapping the input
expression withrostring when you send it:

MLPutFunction(lp, "EnterExpressionPacket", 1);
MLPutFunction(lp, "ToString", 1);
MLPutFunction(lp, "Plus", 2);
MLPutinteger(Ip, 3);
MLPutinteger(Ip, 4);
MLEndPacket(Ip);

2.4 Receiving Expressions from the Kernel

WM 2.4.1 Reading Packets: MLNextPacket and MLNewPacket

Everything the kernel sends to you will be wrapped in a packet. As mentioned earlier, packets are
just functions from the kernel's perspective. Their purpose is to convey to you information about
what is inside, whether you might be interested in it, and how to read it. You can read packets
with MLGetFunction if you want to, but this would be inconvenient. InstédethLink has two

special functions for manipulating incoming packstsyextPacket andMLNewPacket. Their

names are confusingly similar, but their actions are quite different. Think of packets as boxes,
and the kernel as sending you a stream of boxes on a conveymiLReltPacket opens a box,
whereasviLNewPacket discards an already-opened box. Once you have opened a box with
MLNextPacket , you must either read out its entire contents, or abandon itAMitbwPacket . It

is an error to calMLNextPacket at any time other than when you are "between" boxes, either
because you have completely emptied the last one or because you threw it away with
MLNewPacket . MLNewPacket has only one effect--to abandon already-opened boxes. If you call it
between boxes, it does nothing. That is important to remember because it means it is always safe
to callMLNewPacket more than once. If you encounter a condition where you know you are not
interested in any data that might be left in a packet, or you want to make sure that you are
currently between packets, you can salNewPacket without worrying if it has already been

called.

MLNextPacket returns one of a set of predefined integer constants to indicate the type of packet
that was opened. These constants are defined in mathlink.h, and have naRERJHREKT
RETURNTEXTPKTNPUTNAMEPKTetc. If you are implementing a sophisticated "front end" for the
kernel, you will typically have switch statement in your main loop that tests the value of
MLNextPacket and branches to code appropriate for reading the contents of the various packet
types. You will need to do this if you are allowing the user to enter arhifiahematica code,

S0 you need to be prepared to receive virtually any kind of packet type. For example, the user
might execute theputString function, which prompts for an input from the user. If this
happens, your program will receive aputStringPacket from the kernel, which is a

signal that you need to display a dialog box or other prompt to get input and then send back a
TextPacket with the reply. ThenputString function is rarely used, of course, and most

of the time you'd only be sending and receiving a handful of common packets, but if you are
going to give the user a way to entégthematica code you need to be prepared for anything. An

MathLink Tutorial 33

excellent reference for handling the entire set of packets is the frontend.c sample program, which
can be found oMathSource.

For many uses, though, you are only interested in some limited interaction with the kernel (like
using it strictly for computational services), where you know the types of things you will be
sending, or at least where you know the types of results you are interegtgd yo(don't

have to worry about displaying kernel messages, or the reseitstof statements, or

graphics). In these cases, you will simply be discarding most packets. Typically, you will only be
interested in one packet type, the result of a computation, which will usually be a

ReturnPacket (depending on how you sent the computation in the first place, as discussed in
Section 2.3). This is what was done in the example program in Section 2.1. In this case, you
want to implement the logic, "for every packet that is nRétarnPacket , throw it away".

That is coded as follows:

while (MLNextPacket(link) '= RETURNPKT)
MLNewPacket(link);
read_contents_of ReturnPacket();

That little piece of code is responsible for mbtathLink programming headaches than anything
else! That's because it appears throughout the sample programs, so people copy it verbatim into
their own programs without really being aware of its consequences. Specifically, they use it in
situations where ReturnPacket ~ will not be coming. What happens then? Well, you drain off

all packets waiting for &eturnPacket , then callMLNextPacket , which will block forever, so

your program hangs.

Therefore, it is extremely important to be sure that you actually will be getRagraPacket

before you use this code fragment! Typically, people encounter this error for one of two reasons:
they get out of sync with the incoming packets, so that they have already discarded the
ReturnPacket by the time the loop is entered; or, they send computations to the kernel
wrapped inEnterTextPacket (or, equivalently, they wrap it in the functi@nter), which

causes results to come back iRaurnTextPacket , not arReturnPacket . The latter issue

Is discussed in Section 2.3; for now I'll assume you are sendiBgamiatePacket (if you

will be getting areturnTextPacket , just substitute that faReturnPacket in this

discussion).

If your program is hanging unexpectedly, it is almost a certain bet that it is hanging in
MLNextPacket because you are looping waiting for a packet type that will never arrive.

Another potential problem is that you have done something to calahlank error before the
loop is entered. In that case,NextPacket (like mostMathLink functions) will return 0 until the
error condition is cleared witiLClearError . A simple way to avoid this problem is to use the
following packet-reading loop instead:

while ((pkt = MLNextPacket(link)) && pkt != RETURNPKT)
MLNewPacket(link);
if(pkt) {
handle_error(link); /* including calling MLClearError(link) */
}else {
read_contents_of ReturnPacket();

}

Finally, it is often the case that you don't even care what is iRetlnenPacket . For
example, if you send a definition kdathematica like f[x_] := x2 , then you will get back a

MathLink Tutorial 34

ReturnPacket that contains the symballl (many users are not aware that an expression of
this type returns something, because there Bundine printed). Another example is if you read
in a package witlget --the return value ofet is the symbohull . If you don't want to read
theReturnPacket , throw it away with a final call telLNewPacket:

MLPutFunction(link, "Get", 1);
MLPutString(link, "Statistics'NonlinearFit™);

while ((pkt = MLNextPacket(link)) && pkt '= RETURNPKT)
MLNewPacket(link);
MLNewPacket(link); /* abandon the RETURNPKT */

The second most commahathLink error is to forget to drain off theeturnPacket s from

code that you send, especially "initialization" code you send before your real work begins. If you
forget to run the "throw away everything up to and including the R&xtnPacket " loop,

then later when you readraturnPacket that you expect to have the result of the first "real”
computation, you will instead be gettingreturnPacket from something sent earlier.

Remember that everything you send will caugetarnPacket to be sent back, even if just
contains the symbolull .

Wm2.4.2 PacketsMathematica Might Send to You

There are quite a few packet types tflathematica might send to your program. Generally, if

you are not allowing a user to directly interact viiththematica (so you as the programmer have
control over what gets sent), you don't need to worry about many of them. You either won't get
them, or you can just discard them because you are not interested in their contents. For some of
them €.g., InputNamePacket andOutputNamePacket), whether or not you get them
depends on how you send the inputtathematica in the first place (see Section 2.3). Here is a

brief discussion of the more important types. Again, | refer you to the frontend.c program for an
example of how to handle every one of the packet types you might gevidhematica.

O InputNamePacket, OutputNamePacket

You will get these any time you send something wrappethtirTextPacket Of
EnterExpressionPacket (you may not always get abutputNamePacket , as discussed
earlier). Their contents are strings, something 'likg]:=" or"out[12]=" , which you

can print directly to the screen if you want to show the prompts. If you don't want to show these
to the user, you probably should usaluatePacket to send the original input, as explained

in Section 2.3, so they won't even be generated.

O ReturnPacket, ReturnTextPacket, ReturnExpressionPacket

These packets will contain the result of an evaluatioRetirnTextPacket ~ will contain a
formatted string, ready to be printed directly to the screen (that is, it will have the appropriate
line-breaking and padding so that exponents and fractions will be lined up). A
ReturnTextPacket results from sending abnterTextPacket . In contrast, a
ReturnPacket Or aReturnExpressionPacket will contain an expression, which you
will have to read with an appropriate seriesoet calls. This is discussed in more detail
below.

MathLink Tutorial 35

O MessagePacket

This packet signals the beginning of a warning or error message generated by the kernel. An
example is the following:

Part::partd: Part specification x[[1]] is longer than depth of object.

A MessagePacket Will contain two things: first, a symbol (to be read witbhGetSymbol) that
is the name of the functiordrt in the above example), then a string that is the "tag" of the
message ("partd” above). ThessagePacket Wwill be followed by arextPacket that
contains the text of the message.

O TextPacket

This is used for the output ofFaint statement, the output @Function or
Information[Function] , and also the text of a message (see discussion of
MessagePacket). The contents will always be a string (to be read witetString , of
course).

O DisplayPacket

This will hold PostScript code for a graphic, in the form of a string. There may be a series of
these, each containing a piece of the total PostScriptspfayEndPacket will signal the last
piece of PostScript. How to handle graphics is discussed elsewhere in this tutorial.

W 2.4.3 Reading the Contents of a Packet

Once you have "opened" a packet wittNextPacket and you have decided not to discard it,

you need to read out the contents. This will require some appropriate sequencetaglls. In

many cases, the contents of the packet are something simple, like a string, which can be read with
MLGetString . In the case of ReturnPacket , though, the contents are an expression, and

you may need to implement some expression-reading logic of your own. An example of this is

the functiornread_and_print_expression from the factorinteger.c example program that is

included withMathLink. The basic idea is to recursively descend into the expression, calling
MLGetType for each new element to find out whiGet call you will need to read it properly.

If you find yourself embarking on such a project, ask yourself if it is really necessary for you to
receive the results as an arbitrary expression. If you are expecting some simple type of
expression, like a number, that is meaningful in a C program, then fine. But for many
applications, there isn't really a whole lot to do with the dismembered expression pieces you're
going to get from the process. Often, what people really want is just a string form of the result,
because they are only going to display it on the screen. If that's the case, send the computation in
such a way that you will get back a formatted string as a result (see Section 2.3).

MathLink Tutorial 36

H2.44 The "Disown" Functions

MathLink has several functions witbiSown " in their name, for exampleLDisownString and
MLDisownintegerList . WWhenever you us@LGet to receive an object whose size cannot be
known at compile timee(g., a string, symbol, list, or arrayyathLink reads the object into its
own memory space and gives you only the address of the data. For exampt&st8wing

you pass the address offar* (i.e., achar**), andMathLink stuffs the address of the string it
received into youehar* . You don't have to allocate any memory yourself or worry about how
big the data is. At this pointjathLink "owns" the data, and it is waiting for your permission to
free the memory that it occupies, which you grant when you callitheown functions.

Between the time you callLGet andMLDisown, you can only read the data--do not try to modify
it in place. If you need to do that, allocate your own memory and copy the dataedg itging

strcpy).

2.5 Blocking, Yield Functions, and All That

When you issue @et-type call (includingMLNextPacket), MathLink will block if there is

nothing waiting to be read from the link. This will cause a problem if you need to do something
(like service your user interface) without interruption. There are three solutions for handling this
problem.

Hm251 MLReady and MLFlush

MLReady returns 0 to indicate that there is no data on the link waiting to be read, and 1 to indicate
there is. In other words, it tells you whethegea-type call will block. You can use it to check
that there is data waiting before you call a reading function.

MLFlush(Ip);

if(MLReady(Ip)) {
MLNextPacket(Ip);
...handle the packet...

}

Note the call touLFlush beforeMLReady. MathLink is buffered, meaning that if you calbat
function, the data is not necessarily sent right away, but might be held in a buffer instead. Any
time you need to ensure that the data is sent immediately, you ceinriadh . An example

when you might need to do this is if you are sending something to the kernel that will trigger a
side effect, like writing something to a file that your program will read right away.

In the normal flow of writing and reading the link, callsvicFlush are generally unnecessary,
sinceMathLink automatically flushes the link at appropriate times. Specifically, if you issue a
Get-type call and there is nothing there, your side of the link will be flusherkady, however,
does not flush the link, so it can lie to you in that it is possiblsiferady to return 0, yet &et

call would not block. This will happen if your side has some data that when sent will trigger the
other side to reply--theet flushes the link and receives the reply right away. For this reason,
you should always calliLFlush beforeMLReady.

MathLink Tutorial 37

Hm252 Let It Block

WhenMathLink is blocking, it calls what is known as a yield function. A yield function must

have two features: (1) it allows other processes to get processor time (on operating systems like
Macintosh and Windows that do not have preemptive multitasking); (2) it returns 0 or 1 to
indicate whetheMathLink should continue blocking or bail out of the read call.

There is a default yield function insidathLink, the details of which differ from platform to

platform. For example, on the Macintosh, it caltstNextEvent to allow other processes to get
time. If it didn't yield to other processes, then the sending side would never get a chance to send
anything and your read call would block forever!

You can install your own yield function if you wish, and this provides a solution to the blocking
problem. You simply call back to your main event loop from inside your yield function. When the
Get call returns, you process the result, send something else if you want, and then immediately
issue anotheget call. Your program can spend most of its life blocking insitiatLink

function, calling the main event loop to run the user interface or other periodic tasks. Here is a
trivial skeleton of what such a yield function might look like. Note that the second argument to a
yield function is of typevLYieldParameters . This is a reserved argument that is currently used
only in MathLink's own default yield function. You should simply ignore this argument.

int yield_function(MLINK link, MLYieldParameters yp) {
one_pass_main_event_loop();
return O; /* keep on blocking */

}

The function you use to install your own yield functiomisetYieldFunction . The interface to

this function has changed a bit to support someMathLink platforms (Windows and Power
Macintosh). To see how to call it, | recommend that you look at a .tm.c file generated by mprep
(see the first chapter for details). The code generated by mprep installs its own yield function that
works in just the way I've described above (template programs spend their lives blocking inside
MLNextPacket , waiting for the kernel to call them). This will show you the proper way to call
MLSetYieldFunction for your platform and version dflathLink.

Having said this, note that in Versions 2.2.x and earlidtahLink on Unix, there is a bug that
preventdMathLink from calling your yield function when it is blocking in enGet-type call,
unless your program receives a Unix signal. Thus, you will need to set some sort of timer to
periodically send yourself a signalGALRMfor example.

One final noteMathLink is not fully reentrant, in the sense that you cannot issue a call on a link
while another call on that link is in progress (ywan read or write to different links). Therefore,

if you allow your user interface to run while inside the yield function, you must prevent users
from doing anything that would trigger a call on the same link. Thus, before calling the main
event loop, you might need to disable some menu choices or other features. You can then
re-enable them before returning from the yield function.

MathLink Tutorial 38

Wm253 Write a Multithreaded Program

If your operating system and development environment allow you to write multithreaded
programs, this is an ideal solution to the blocking problem. Most operating systems support
multithreaded programming, including Macintosh, Windows NT, the upcoming Windows 4.0,
and many flavors of Unix. Simply fork a thread in which the read occurs and let it block. You
carry on other processing in other threads.

2.6 Graphics

When many people think dathematica graphics, they think of the PostScript code that is
rendered into the image they see. It is important to rememberNtagih@matica graphic is an
expression, like everything elseMathematica. It might look something like:

Graphics[{Line[{{0,0}, {1,1}}], Point[{.5,.5}],]

The PostScript code is generated as a side-effect ofsfiigy function, and is not an inherent
part of the graphics object.

If you send a command that produces a graphic, say for example:

MLPutFunction(lp, "ToExpression”, 1);
MLPutString(Ip, "Plot[x"2, {x,0,1}]");

You will get back a&returnPacket —containing theésraphics object, and also a series of
DisplayPackets ~ containing PostScript (the last one of which msplayEndPacket). If you

want to display the graphic you have two choices: either render the PostScript somehow, or
convert thesraphics object into a form that you can render. This may seem obvious, but many
programmers forget that handling the PostScript is not their only option.

It is likely that in the future the PostScipt interpreter that is built into the notebook front end will
be spun off as a separdfi@thLink program that is callable by programmers. When this happens,
it will be easy foiMathLink programmers to rend&tathematica PostScript in their own

programs. Until then, though, dealing with PostScript is problematic unless your machine or
environment supports PostScript rendering.

You might want to consider dealing directly with athematica graphics expression instead of

the PostScript. If you have a graphics library among your programming tools, you will probably
find it is not difficult to convert mod¥lathematica graphics into the native functions of your

library.

Here are some tips for handling PostScript on various platforms.

H26.1 Unix

Under Unix, standalone PostScript interpreters have always been pariiatiesatica

distribution. You can use them in the same way as they are used by the non-notebook interface.
What you will get is a separate window, not a part of your program, managed by the PostScript
interpreter €.g., motifps, olps, etc.) To enable this behavior, read in the appropriate graphics
initialization file. On most Unix systems, this will be Motif.m:

MathLink Tutorial 39

MLPutFunction(link, "EvaluatePacket", 1);
MLPutFunction(link, "Get", 1);

MLPutString(link, "Motif.m"); /* NeXT.m on a NeXT */
MLEndPacket(link);

/* Now, read and discard packets up to, and including, the next
ReturnPacket, which will be the return value of the "Get" function.
It will contain the symbol Null, which is of no interest. */

This imitates what happens when the kernel is run from the Unix command line. When you issue
commands that trigger graphics, you will not gieplayPacket S containing PostScript; rather,
a window displaying the graphic will appear.

H2.6.2 Macintosh and Windows

There is currently no supported way to rendethematica PostScript on these platforms. For
Windows, see the source for the demo Visual Basic front end, which performs this feat.

It is possible to have your program create a skeleton notebook file and write the PostScript to that
file. When the file is opened in the notebook front end, the graphics will be displayed. The
frontend.c program demonstrates this.

MathLink Tutorial 40

3. Using Other Languages

3.1 C++

TheMathLink library can be called directly from C++ exactly as it is called from C. You don't

even need to think about it. However, there is a complication when writing installable functions,
depending on what version BfathLink you have. The issue is that in some versions of

MathLink the C code that is generated by mprep is K&R-style (for compatibility with older C
compilers), not ANSI-style, and so it will not pass through a C++ compiler. Beginning with
Version 2.2.3, mprep has the ability to generate .tm.c files that are legal C++ files (you can
rename them .tm.cpp if you wish). On Macintosh and Windows, this is the default behavior. On
Unix platforms, you need to specify a command-line argument to mprep to have it generate
C++-compatible code. This behavior is undocumented and may change in the future, but for now
the argument is -prototypes:

/math/Bin/MathLink/mprep -prototypes addtwo.tm -0 addtwo.tm.c

If you have Version 2.2.2 or earlier, you must use a C compiler on the .tm.c file generated by
mprep. You can still code your external functions in C++ and pass those source files through
your C++ compiler. However, note that your functions are being called from the .tm.c file, and
thus from C. C++ provides a mechanism whereby you can inform the compiler that certain
functions will be called from C: thextern "C" declaration. This tells the C++ compiler not to
perform the usual name-mangling.

In summary, if you are not making use of the template mechanism (that is, you will not have a
.tm file in your project), you can caathLink from C++ without worrying about language
issues. If you are using a .tm file, and have Version 2.2.2 or later Mfatheink materials, you
also don't need to worry about these issues since you can rename the .tm.c file .tm.cpp and pass
it through the C++ compiler. On Unix, you will need to specify the -proto option to mprep to
enable this. If you have an earlier versiomMatthLink, you will need to obey these two
guidelines:

-- The .tm.c file must be compiled with a C compiler.

-- Every C++ function named in the .tm file (and which will therefore be called

from C) needs to be declaegtn "C"

3.2 FORTRAN and Others

TheMathLink library is written in C. To create programs that M&thLink, you need to call the
functions in this library. For this reason, and others outlined b&laLink is easiest to use
from C. You can, however, uséathLink in conjunction with FORTRAN or other languages.
This section refers specifically to FORTRAN, but much of the information is relevant to other
languages as well.

MathLink Tutorial 41

As discussed earlier, there are two broad classes of ustghbfink. The first and most

common class of uses is to make external functions, written in some compiled language like C or
FORTRAN, available withitMathematica as if they were built-in functions. We call such external
functions "installable” since they use th&all mechanism to be made available within
Mathematica, or alternatively "template-based" since they involve writing a template file. The
second class of usesMfthLink is to allow your own programs to make usdathematica as a
computational engine. It is your program that users interact with, and the senhtatbephatica

are used in the background. These two us@satiiLink present different issues and problems to

the FORTRAN programmer, so they will be discussed separately.

W 3.2.1 Calling External FORTRAN Functions from Mathematica

The mprep program writes C code for a very significant amount dAakid ink-related portions
(perhaps all of it) of an installable program. It is convenient to make use of this template
mechanism when you want to call external functions fkathematica, no matter what language

they are written in. This requires that you have a C compiler. You may not need to know C in any
significant sense, because the C code that you write may only be a few lines, and some of that is
"boilerplate” code that is the same for every program and can just be copied oMlathihiek

Reference Guide or the sample programs supplied wiathLink.

You will be creating a C program that needs to call your external FORTRAN function. The exact
details of how you prepare your FORTRAN routine to be called from C depends on details of
your FORTRAN compiler, and perhaps also your C compiler. The difficulty of doing this

depends on the types of parameters you need to pass from C to FORTRAN and back. If you only
need to pass integers or real numbers, then it may be very simple. It is more complicated to work
with strings and arrays, since their representations differ in the two languages. As a simple
example, consider how you would modify the basic addtwo example. Everything about this
example remains the same except the actual C code tafdtive function, and the fact that there

Is now a separately compiled FORTRAN file containing code for the computation. Here's how

the FORTRAN code might look:

subroutine addtwoF(i, j, k)
integer*4 i,j,k

k=i+]j

return

end

Here's how theddtwo function might look:
int addtwo(int i, int j) {
int result;

addtwoF(&i, &j, &result);
return result;

}

Theaddtwo C code is just a "wrapper" that prepares things for callingdd@oF function. The

& is the "address-of" operator in C, and it is needed because FORTRAN expects arguments to be
passed by reference, not by value (as is the case with C). Thus, you need taqaassrtonot

the values of the integerrsand;j , but the actual addresses where the values are stored. The
FORTRAN code extracts the values from these addresses, adds them, then stuffs the result at the

MathLink Tutorial 42

address of the result variable. On some systems, you may need to put an underscore at the end of
theaddtwoF function in the C source, calling it agdtwoF_(&i, &j, &result) :

It is also possible that your FORTRAN compiler allows you to specify that parameters to a
function will be passed by value. If this is the case, then you may be able to completely dispense
with the C portion of theddtwo function because your FORTRAN code will be written in a way
that it can be called exactly as if it were written in C. The calidovo is made from the code

that mprep creates, and of course it writesatlhievo function call as ikddtwo were written in

C. If your FORTRAN compiler lets you write FORTRAN that adheres to C's calling

conventions, then you may not need to write any C wrappers around your functions. An example
is Absoft FORTRAN, which includes theALUEkeyword to specify that parameters will be

passed by value. Here is what #hetwo code might look like in such a dialect of FORTRAN:

integer*4 function addtwo(i, j)
integer*4 i,

VALUE |, |

addtwo =i +

return

end

In this case, there is r@dtwo written in C.

| want to emphasize that different FORTRAN compilers may use different calling conventions,

and thus there are many issues that might need to be resolved. These include what order the
arguments are passed in, whether they are on the stack or in registers, whether the return value is
on the stack or in a register, etc.

Whichever of these two methods you choose, remember that you need a C compiler, and that the
issue is not how to call C from FORTRAN, but rather how to call FORTRAN from C. You

should consult your FORTRAN compiler's documentation for information on how to write and
compile FORTRAN functions so that they can be called from C.

H3.2.2InterCall T™M

There is a commercial product (not from Wolfram Research) daliedCall that simplifies the
process of calling external FORTRAN (or C) functions from witathematica. This method
usesMathLink only indirectly.InterCall has many capabilities, and | make no attempt to describe
them here. This discussion is not an endorseméntepfCall. For more information, consult
MathSource, which has a lot dinterCall-related materials. Try sending the following email
message to mathsource@wri.com:

find InterCall

You will get a return mailing of abstracts of items on MathSource pertainingt@all.
Probably the most useful item is this one:

0202-587: InterCall(tm) Information Sheet and Abridged Manual (June 1992)
Author: Terry Robb
InterCall completely integrates the symbolic capabilities of
Mathematica with the numeric routines of any external library. You
can pass a Mathematica function, array, or any other expression as
an argument to any external routine and InterCall will send the
correct type of information to that external routine.

MathLink Tutorial 43

0011: Info.txt Plain-text information sheet (5 kilobytes)

0022: InterCall.tex TeX version of Abridged InterCall Manual (53
kilobytes)

0033: InterCall.ps PostScript version of Abridged InterCall
Manual (180 kilobytes)

If you want, say, the Info.txt document, send the following message to mathsource@wri.com:
send 0202-587-0011

W 3.2.3 Calling Mathematica from a FORTRAN Program

The other class of usesMfthLink is where you write the program that the user interacts with,
and use the services Mfathematica in the background. This requires more in-depth use of the
MathLink library, because you will be writing all the code yourself (opening and closing the link,
putting and getting all expressions, checking for and handling errors, etc.) If you need to make
extensive use d¥lathLink in such a program, it may be easiest to write in C (or at least write the
MathLink-related portions of your program in C). However, since many FORTRAN compilers
allow you to call external functions written in C, it is possible to niA&#nLink calls directly

from a FORTRAN program. Unfortunately, there are differences in calling conventions and data
representations that need to be overcome.

One approach is to write some "glue” code that acts as a wrapper aroitathihiek functions

and serves to translate back and forth between FORTRAN and C conventions. (That's what was
done in the first example above, although it was done in reverse--the glue was so that FORTRAN
could be called from C.) | suppose it would be possible to write the glue code in FORTRAN,
depending on the capabilities of your FORTRAN compiler, but it would be easiest to write in C.
Either way, if you know enough about C to write this glue, then you'll probably want to just do
the whole project in C. Fortunately, someone else has already written a basic glue library, and it
is available orMathSource, although it has not been updated for a while. | have not used it

myself, but | have no reason to believe that it doesn't still work. To get it, send a message with
the following body to mathsource@wri.com:

send 0205-434

This package provides a C source file that encapsulates a basiMa#ilohk calls in such a

way that they can be called from FORTRAN. You compile the file (with a C compiler, of course)
to create an external library that provides a number of functions that you can call from
FORTRAN, instead of directly using the functions in kethLink library itself.

